This article describes a model of loudness for time-varying sounds that incorporates the concept of binaural inhibition, namely, that the signal applied to one ear can reduce the internal response to a signal at the other ear. For each ear, the model includes the following: a filter to allow for the effects of transfer of sound through the outer and middle ear; a short-term spectral analysis with greater frequency resolution at low than at high frequencies; calculation of an excitation pattern, representing the magnitudes of the outputs of the auditory filters as a function of center frequency; application of a compressive nonlinearity to the output of each auditory filter; and smoothing over time of the resulting instantaneous specific loudness pattern using an averaging process resembling an automatic gain control. The resulting short-term specific loudness patterns are used to calculate broadly tuned binaural inhibition functions, the amount of inhibition depending on the relative short-term specific loudness at the two ears. The inhibited specific loudness patterns are summed across frequency to give an estimate of the short-term loudness for each ear. The overall short-term loudness is calculated as the sum of the short-term loudness values for the two ears. The long-term loudness for each ear is calculated by smoothing the short-term loudness for that ear, again by a process resembling automatic gain control, and the overall loudness impression is obtained by summing the long-term loudness across ears. The predictions of the model are more accurate than those of an earlier model that did not incorporate binaural inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5318944 | PMC |
http://dx.doi.org/10.1177/2331216516682698 | DOI Listing |
Hear Res
December 2024
Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address:
Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate.
View Article and Find Full Text PDFNeuroimage
October 2024
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Front Neural Circuits
August 2024
Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location.
View Article and Find Full Text PDFAerosp Med Hum Perform
July 2024
Spatial disorientation (SD) remains the leading contributor to Class A mishaps in the U.S. Navy, consistent with historical trends.
View Article and Find Full Text PDFJ Neurosci
July 2024
Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
Congenital single-sided deafness (SSD) leads to an aural preference syndrome that is characterized by overrepresentation of the hearing ear in the auditory system. Cochlear implantation (CI) of the deaf ear is an effective treatment for SSD. However, the newly introduced auditory input in congenital SSD often does not reach expectations in late-implanted CI recipients with respect to binaural hearing and speech perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!