Indium-oxide (InO) nanobelts coated by a 5-nm-thick carbon layer provide an enhanced photocatalytic reduction of CO to CO and CH, yielding CO and CH evolution rates of 126.6 and 27.9 μmol h, respectively, with water as reductant and Pt as co-catalyst. The carbon coat promotes the absorption of visible light, improves the separation of photoinduced electron-hole pairs, increases the chemisorption of CO, makes more protons from water splitting participate in CO reduction, and thereby facilitates the photocatalytic reduction of CO to CO and CH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b00266DOI Listing

Publication Analysis

Top Keywords

photocatalytic reduction
12
reduction carbon-coated
4
carbon-coated indium-oxide
4
indium-oxide nanobelts
4
nanobelts indium-oxide
4
indium-oxide ino
4
ino nanobelts
4
nanobelts coated
4
coated 5-nm-thick
4
5-nm-thick carbon
4

Similar Publications

Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy.

Dent Mater

January 2025

Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:

Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.

Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.

View Article and Find Full Text PDF

6PPD-quinone (6PPD-Q) as a derivative of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), is attracting intensive attention due to the significant hazard to ecosystems. However, the effective management of this type of contaminant has been scarcely reported. Hydrangea-like hollow O, Cl-codoped graphite-phase carbon nitride microspheres (HHCN), featuring open pores were readily prepared by molecular self-assembly and utilized to address 6PPD-Q in an aqueous system for the first time.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

The role and progress of zeolites in photocatalytic materials.

Environ Res

January 2025

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China. Electronic address:

This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!