The cleavage specificity of R.Cfr9I was determined to be C decreases CCGGG whereas the methylation specificity of M.Cfr9I was C4mCCGGG. The action of MspI, HpaII, SmaI, XmaI and Cfr9I restriction endonucleases on an unmethylated parent d(GGACCCGGGTCC) dodecanucleotide duplex and a set of oligonucleotide duplexes, containing all possible substitutions of either 4mC or 5mC for C in the CCCGGG sequence, was investigated. It was found that 4mC methylation, in contrast to 5mC, renders the CCCGGG site resistant to practically all the investigated endonucleases. The cleavage of methylated substrates with restriction endonucleases is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC306195PMC
http://dx.doi.org/10.1093/nar/15.17.7091DOI Listing

Publication Analysis

Top Keywords

restriction endonucleases
12
cleavage methylated
8
mspi hpaii
8
hpaii smai
8
smai xmai
8
xmai cfr9i
8
cfr9i restriction
8
endonucleases cleavage
8
methylated cccggg
4
cccggg sequences
4

Similar Publications

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

The methylotrophic yeast belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically contain a mixture of sexually dimorphic cells that are prone to self-diploidisation and spore formation accompanied by genetic rearrangements. These characteristics pose a significant challenge to the development of genetically stable producers for industrial use.

View Article and Find Full Text PDF

Background: Leptospirosis is an acute zoonotic disease caused by pathogenic , primarily transmitted to humans through contact with water or soil contaminated by the bacteria. It is globally distributed, with heightened prevalence in tropical regions. While prior studies have examined the pathophysiology, epidemiology, and risk factors of leptospirosis, few have explored trends and emerging topics in the field.

View Article and Find Full Text PDF

Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).

View Article and Find Full Text PDF

Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.

ACS Nano

January 2025

Bragg Centre for Materials Research, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!