A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EphB4 Regulates Self-Renewal, Proliferation and Neuronal Differentiation of Human Embryonic Neural Stem Cells in Vitro. | LitMetric

Background/aims: EphB4 belongs to the largest family of Eph receptor tyrosine kinases. It contributes to a variety of pathological progresses of cancer malignancy. However, little is known about its role in neural stem cells (NSCs). This study examined whether EphB4 is required for proliferation and differentiation of human embryonic neural stem cells (hNSCs) in vitro.

Methods: We up- and down-regulated EphB4 expression in hNSCs using lentiviral over-expression and shRNA knockdown constructs and then investigated the influence of EphB4 on the properties of hNSCs.

Results: Our results show that shRNA-mediated EphB4 reduction profoundly impaired hNSCs self-renewal and proliferation. Furthermore, detection of differentiation revealed that knockdown of EphB4 inhibited hNSCs differentiation towards a neuronal lineage and promoted hNSCs differentiation to glial cells. In contrast, EphB4 overexpression promoted hNSCs self-renewal and proliferation, further induced hNSCs differentiation towards a neuronal lineage and inhibited hNSCs differentiation to glial cells. Moreover, we found that EphB4 regulates cell proliferation mediated by the Abl-CyclinD1 pathway.

Conclusion: These studies provide strong evidence that fine tuning of EphB4 expression is crucial for the proliferation and neuronal differentiation of hNSCs, suggesting that EphB4 might be an interesting target for overcoming some of the therapeutic limitations of neuronal loss in brain diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000459693DOI Listing

Publication Analysis

Top Keywords

hnscs differentiation
16
self-renewal proliferation
12
neural stem
12
stem cells
12
ephb4
11
hnscs
9
ephb4 regulates
8
proliferation neuronal
8
differentiation
8
neuronal differentiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!