We describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique. For quantification, we validated our results by comparing all of the data with electron spin resonance (ESR). The ACB had viable temporal resolution and accuracy to differentiate temporal parameters of liver accumulation, caused by vasculature extravasation and macrophages action. The biodistribution experiment showed different uptake profiles for different doses and injection protocols. Comparisons with the ESR system indicated a correlation index of 0.993. We present the ACB system as an accessible and versatile tool to monitor magnetic nanoparticles, allowing in vivo and real-time evaluations of distribution and quantitative assessments of particle concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2017.02.005 | DOI Listing |
Sci Rep
January 2025
College of Engineering, Applied Science University (ASU), Manama, Kingdom of Bahrain.
This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Arak University, Arak, 38481-77584, Iran.
In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Biomedical Engineering , University of Wisconsin-Milwaukee College of Engineering and Applied Science, 3203 N Downer Ave, Milwaukee, Milwaukee, Wisconsin, 53211-3029, UNITED STATES.
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Ural Federal University, Ekaterinburg, Russia.
This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.
View Article and Find Full Text PDFMater Today Bio
February 2025
Anhui University of Chinese Medicine, Hefei, 230012, China.
The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!