Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity.

Biol Chem

Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum.

Published: May 2017

Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2016-0275DOI Listing

Publication Analysis

Top Keywords

guanine nucleotide
8
nucleotide exchange
8
nervous system
8
involvement guanine
4
exchange factor
4
vav3
4
factor vav3
4
vav3 central
4
central nervous
4
system development
4

Similar Publications

The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.

View Article and Find Full Text PDF

Riboswitches are RNAs that recognize ligands and regulate gene expression. They are typically located in the untranslated region of bacterial messenger RNA and consist of an aptamer and an expression platform. In this study, we examine the folding pathway of the Vc2 (Vibrio cholerae) riboswitch aptamer domain, which targets the bacterial secondary messenger cyclic-di-GMP.

View Article and Find Full Text PDF

Herein we present a series of luminescent Tb(III)-probes ([Tb-Ltrp], [Tb-Ltyr], and [Tb-Lphe]) for sensing and discriminating purine nucleoside polyphosphates (NPP) based on a modified DTTA chelator appended to aromatic amino acids (Laa). The optically most effective luminescent [Tb-Ltrp] probe preferentially discriminates the guanine-NPPs over the adenine-NPPs PeT-based modulation of Tb(III) luminescence within the biological concentration range.

View Article and Find Full Text PDF

GATA1-mediated macrophage polarization via TrkB/cGMP-PKG signaling pathway to promote the development of preeclampsia.

Eur J Med Res

January 2025

Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, 250012, Shandong, People's Republic of China.

Background: Preeclampsia (PE) is a severe pregnancy complication characterized by hypertension and proteinuria. PE poses a substantial threat to the health of both mothers and fetuses, and currently, there is no definitive treatment available. Recent studies have indicated that the transcription factor GATA1 may be implicated in the pathological processes of PE, but the underlying mechanism remains elusive.

View Article and Find Full Text PDF

The TRAPP (TRAnsport Protein Particle) protein complex is a multi-subunit complex involved in vesicular transport between intracellular compartments. The TRAPP complex plays an important role in endoplasmic reticulum-to-Golgi and Golgi-to-plasma membrane transport, as well as autophagy. TRAPP complexes comprise a core complex, TRAPPI, and the association of peripheral protein subunits to make two complexes, known as TRAPPII and TRAPPIII, which act as Guanine Nucleotide Exchange Factors (GEFs) of Rab11 and Rab1, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!