A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Several White Matter Tracts in Feline and Canine Brain by Using Magnetic Resonance Diffusion Tensor Imaging. | LitMetric

AI Article Synopsis

  • A first DTI atlas for white matter tracts in the feline brain was created to highlight the significance of DTI in understanding brain anatomy in cats, compared to previously published dog brain images.
  • The study involved analyzing DTI MR images from four cats euthanized for non-neurological reasons, using advanced imaging techniques shortly after death.
  • Findings revealed notable differences in brain structure between cats and dogs, particularly with the limbic system's prominence in cats and the overall characteristics of white matter fiber bundles.

Article Abstract

Recently, we published a first anatomical diffusion tensor imaging (DTI) atlas regarding white matter tracts in the canine brain. The purpose of this study was to show the significance of DTI in the revelation of the white matter fibres in the feline brain (i.e., to obtain an anatomical DTI atlas of images) and to descriptively compare these to previously obtained white matter fibre images of the canine brain. DTI MR Images of four cats euthanized for reasons other than neurological disorders were obtained with a 3 T system. Combined fractional anisotropic (FA) and directional maps were obtained within the hour after death. An experienced anatomist tracked white matter tracts of clinical relevance using the scanner software. After validation of these tracts, we compared relevant neurological connections between the cat and the dog. Comparison of cerebral structures between different species is easier when the three dimensional anatomy is visualized by using DTI. 3D rendered DTI images clearly show major differences in neurological architecture between cats and dogs for example, the more important space occupying role of the limbic system, and the less diffuse, less nodular, less pronounced and thinner fibre bundles in the feline brain compared to the canine brain (except for the cerebellum different parts connecting fibres passing through the brainstem which are pronouncedly developed). Anat Rec, 300:1270-1289, 2017. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.23579DOI Listing

Publication Analysis

Top Keywords

white matter
20
canine brain
16
matter tracts
12
diffusion tensor
8
tensor imaging
8
dti atlas
8
feline brain
8
dti images
8
brain
6
dti
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!