Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ga-MIL-53 is a metal-organic framework (MOF) that exhibits a "breathing effect," in which the pore size and overall MOF topology can be influenced by temperature, pressure, and host-guest interactions. The phase control afforded by this flexible framework renders Ga-MIL-53 a promising material for guest storage and sensing applications. In this work, the structure and behavior of four Ga-MIL-53 phases (as, ht, enp and lt), along with CO adsorbed within Ga-MIL-53 at various loading levels, has been investigated using Ga solid-state NMR (SSNMR) experiments at 21.1T and 9.4T. Ga SSNMR spectra are observed to be very sensitive to distortions in the octahedral GaO secondary building units within Ga-MIL-53; by extension, Ga NMR parameters are indicative of the particular crystallographic phase of Ga-MIL-53. The evolution of Ga NMR parameters with CO loading levels in Ga-MIL-53 reveals that the specific CO loading level offers a profound degree of control over the MOF phase, and the data also suggests that a re-entrant phase transition is present. Adsorption of various organic compounds within Ga-MIL-53 has been investigated using a combination of thermal gravimetric analysis (TGA), powder X-ray diffraction (pXRD) and Ga SSNMR experiments. Notably, pXRD experiments reveal that guest adsorption and host-guest interactions trigger unambiguous changes in the long-range structure of Ga-MIL-53, while Ga SSNMR parameters yield valuable information regarding the effect of the organic adsorbates on the local GaO environments. This approach shows promise for the ultra-wideline investigation of other quadrupolar metal nuclei in MIL-53 (e.g., In-MIL-53) and MOFs in general, particularly in regards to adsorption-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ssnmr.2017.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!