Genotypes can persist in unpredictable environments by "hedging their bets" and producing diverse phenotypes. Theoretical studies have shown that the phenotypic variability needed for a bet-hedging strategy can be generated by factors either inside or outside an organism. However, sensing the environment and bet hedging are frequently treated as distinct evolutionary strategies. Furthermore, nearly all empirical studies of the molecular underpinnings of bet-hedging strategies to date have focused on internal sources of variability. We took a synthetic approach and constructed an experimental system where a phenotypic trade-off is mediated by actively sensing a cue present in the environment. We show that active sensing can generate a diversified bet-hedging strategy. Mutations affecting the norm of reaction to the cue alter the diversification strategy, indicating that bet hedging by active sensing is evolvable. Our results indicate that a broader class of biological systems should be considered as potential examples of bet-hedging strategies, and that research into the structure of environmental variability is needed to distinguish bet-hedging strategies from adaptive plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520672 | PMC |
http://dx.doi.org/10.1111/evo.13199 | DOI Listing |
Plant Biol (Stuttg)
December 2024
Laboratory of Entomology, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands.
Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities.
View Article and Find Full Text PDFAbstractClimate change will affect both the mean and the variability in environmental conditions and may have major negative impacts on population densities in the future. For annual plants that already live in an extreme environment like the Sonoran Desert, keeping a fraction of their seeds dormant underground (for possibly years at a time) is critical to survive. Here, we consider how this form of bet hedging (i.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA.
strain E264 (E264) and close relatives stochastically duplicate a 208.6 kb region of chromosome I via RecA-dependent recombination between two nearly identical insertion sequence elements. Because homologous recombination occurs at a constant, low level, populations of E264 are always heterogeneous, but cells containing two or more copies of the region (Dup+) have an advantage, and hence predominate, during biofilm growth, while those with a single copy (Dup-) are favored during planktonic growth.
View Article and Find Full Text PDFBiofilm
December 2024
Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark.
The major human pathogen forms biofilms comprising of a fibrin network that increases attachment to surfaces and shields bacteria from the immune system. It secretes two coagulases, Coagulase (Coa) and von Willebrand factor binding protein (vWbp), which hijack the host coagulation cascade and trigger the formation of this fibrin clot. However, it is unclear how Coa and vWbp contribute differently to the localisation and dynamics of clot assembly in growing biofilms.
View Article and Find Full Text PDFPest Manag Sci
November 2024
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Background: In interspecific competitive interactions at the same trophic level, herbivores are often hypothesized to exhibit a fast life-history strategy characterized by early reproduction and a short lifespan. Here, we analyzed the shift in life history of the psyllid Bactericera gobica when it interacts with the aphid Aphis gossypii, the thrips Frankliniella occidentalis, or the mite Aceria pallida in similar ecological niches because all of them cause damage to goji berry leaves.
Results: We found that psyllids displayed a typical fast life history when interacting with aphids and thrips.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!