To be accepted into social groups, individuals must internalize and reproduce appropriate group conventions, such as rituals. The copying of such rigid and socially stipulated behavioral sequences places heavy demands on executive function. Given previous research showing that challenging executive functioning improves it, it was hypothesized that engagement in ritualistic behaviors improves children's executive functioning, in turn improving their ability to delay gratification. A 3-month circle time games intervention with 210 schoolchildren (M = 7.78 years, SD = 1.47) in two contrasting cultural environments (Slovakia and Vanuatu) was conducted. The intervention improved children's executive function and in turn their ability to delay gratification. Moreover, these effects were amplified when the intervention task was imbued with ritual, rather than instrumental, cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cdev.12762 | DOI Listing |
Sci Rep
January 2025
Computational Learning Theory Team, RIKEN-Advanced Intelligence Project, Fukuoka, 819-0395, Japan.
Providing continuous wireless connectivity for high-speed trains (HSTs) is challenging due to their high speeds, making installing numerous ground base stations (BSs) along the HST route an expensive solution, particularly in rural and wilderness areas. This paper proposes using multiple unmanned aerial vehicles (UAVs) to deliver high data rate wireless connectivity for HSTs, taking advantage of their ability to fly, hover, and maneuver at low altitudes. However, autonomously selecting the optimal UAV by the HST is challenging.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China.
Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.
Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.
Unlabelled: Delay period activity in the dorso-lateral prefrontal cortex (dlPFC) has been linked to the maintenance and control of sensory information in working memory. The stability of working memory related signals found in such delay period activity is believed to support robust memory-guided behavior during sensory perturbations, such as distractors. Here, we directly probed dlPFC's delay period activity with a diverse set of activity perturbations, and measured their consequences on neural activity and behavior.
View Article and Find Full Text PDFExecutive functions, including working memory, are typically assessed clinically with neuropsychological instruments. In contrast, computerized tasks are used to test these cognitive functions in laboratory human and animal studies. Little is known of how neural activity captured by laboratory tasks relates to ability measured by clinical instruments and, by extension, clinical diagnoses of pathological conditions.
View Article and Find Full Text PDFComput Struct Biotechnol J
November 2024
Intellicode Cooperation, Republic of Korea.
Conventional personal health record (PHR) management systems are centralized, making them vulnerable to privacy breaches and single points of failure. Despite progress in standardizing healthcare data with the FHIR format, hospitals often lack efficient platforms for transferring PHRs, leading to redundant tests and delayed treatments. To address these challenges, we propose a decentralized PHR management system leveraging Personal Data Stores (PDS) and Decentralized Identifiers (DIDs) in line with the Web 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!