In this work, a sensitive bisphenol A (BPA) electrochemical sensor was assembled using a surfactant-free AuPd nanoparticles-loaded graphene nanosheets (AuPdNPs/GNs) modified electrode. The AuPdNPs monodispersed on GNs were successfully prepared by the spontaneous redox reaction between bimetallic precursors and GNs. Because no surfactant or halide ions were involved in the proposed synthesis, the prepared composite was enabled to directly modify a glassy carbon electrode without any pre-treatments. Moreover, due to the synergetic effect of Au and Pd, AuPdNPs/GNs displayed high electrochemical activity with well-defined voltammetric peaks of BPA oxidation and lower overpotential compared with monometallic PdNPs and AuNPs supported GNs. According to the results of differential pulse voltammetry (DPV), under optimized conditions, a good linear response was observed for the concentration of BPA in the range of 0.05-10μM with a detection limit of 8nM. The developed electrochemical sensor was successfully applied to determine BPA in food package. This study indicated that AuPdNPs/GNs based electrochemical sensor can be a promising and reliable tool for rapid analysis of emergency pollution affairs of BPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2017.01.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!