Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to compare the fluorescence properties of dry and wet samples of contemporary tooth-coloured restorative materials using a fluorescence based DSLR camera and a variety of LEDs emitting different wavelengths of visible light as excitation sources. The materials examined included resin composites; ceramics and hybrid restorative materials such as ormocers, Vita Enamic™ and resin reinforced glass-ionomer cements. The levels of fluorescence for each sample under different combinations of incident light wavelengths and filters was analysed by using histogram data for colour channels from Adobe Photoshop software. Fluorescence patterns were influenced by water sorption of the materials. UV-A/Violet light (405±nm) produced the greatest range of luminosity values (10-204) amongst the tooth-coloured restorative materials, and showed the greatest differences between restorations and tooth structure. The best filter combinations with violet light were orange or yellow filters. Under ultraviolet excitation, Fuji VIII A2 exhibited a unique bright pink fluorescence emission, while VitaEnamic™, ormocer and glass-ionomer cements emitted bluish-pink fluorescence emissions. In conclusion, restorative materials exhibited varied emission pattern under UV-A (405nm) light, which enables their detection and differentiation from natural tooth structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2017.01.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!