Gestational diabetes mellitus (GDM) is a form of diabetes that is first recognised during pregnancy, with no evidence of pre-existing type 1 or type 2 diabetes. The prevalence of GDM has been rising steadily over the past few decades, coinciding with the ongoing epidemic of obesity and type 2 diabetes. Although GDM normally disappears after delivery, women who have been previously diagnosed with GDM are at a greater risk of developing gestational diabetes in subsequent pregnancies, and type 2 diabetes later in life. Infants born to mothers with GDM also have a higher risk of developing type 2 diabetes in their teens or early adulthood. There are many possible causes of insulin resistance, and multiple metabolic aberrants are known to be involved in the development of different forms of diabetes. Increasing evidence suggests that different forms of diabetes share common pathogenesis and pathophysiological dysregulation resulting from a progressive β-cell demise or dysfunction. The outcome manifests clinically as hyperglycaemia. The development of GDM may represent a very early stage of the progression to type 2 diabetes that is being manifested under the stresses of pregnancy. However, the exact mechanisms of GDM development are not clearly understood. Based on the results of a three-part longitudinal metabolomics study of Chinese pregnant women, in combination with the current literature, a new model of GDM development is proposed to outline the biomolecular mechanisms underpinning GDM. A possible cause of GDM is obesity, which is an important clinical risk factor for the development of diabetes. Women who develop GDM generally have higher body mass indices when compared with healthy pregnant women, and obesity can induce low-grade inflammation. Chronic low-grade inflammation induces the synthesis of xanthurenic acid, which is known to be associated with the development of type 2 diabetes, pre-diabetes and GDM. Hyperglycaemia accelerates purine nucleotide synthesis, which in turn stimulates nucleotide breakdown and increases the concentration of nucleotide degradation products, including superoxide molecules and uric acid. Reactive oxygen species and excessive intracellular uric acid may also have direct effects on the development of the disease or further deterioration of the condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2017.02.008 | DOI Listing |
Ginekol Pol
January 2025
Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, Poland, Poland.
Anti-Müllerian hormone (AMH), also known as Müller duct inhibitory factor and primarily known for its role in sexual differentiation. In female fetuses, AMH production by granulosa cells begins around the 36th week of gestation and continues in women until menopause. It is becoming more significant in the endocrine and gynecological diagnosis of adult women.
View Article and Find Full Text PDFDiab Vasc Dis Res
January 2025
Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Background: This study aimed to investigate the effects of oral semaglutide on the changes in food preference of Japanese patients with type 2 diabetes.
Methods: This retrospective multicenter study included 75 patients with type 2 diabetes who received oral semaglutide. The primary outcome was the change in the score of brief-type self-administered diet history questionnaire (BDHQ) score 3 months after the initiation of oral semaglutide treatment.
Eur J Prev Cardiol
January 2025
Department of Medicine, Mount Auburn Hospital, Harvard Medical School, 330 Mt Auburn St, Cambridge, MA 02138, USA.
Dis Model Mech
January 2025
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK.
The excessive accumulation of intrahepatic triglyceride (IHTG) in the liver is a risk factor for metabolic diseases, including type 2 diabetes and cardiovascular disease. IHTG can excessively accumulate owing to imbalances in the delivery, synthesis, storage and disposal of fat to, in and from the liver. Although obesity is strongly associated with IHTG accumulation, emerging evidence suggests that the composition of dietary fat, in addition to its quantity, plays a role in mediating IHTG accumulation.
View Article and Find Full Text PDFFam Pract
January 2025
Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
Background: The optimal control of type 2 diabetes (T2D) is defined by the innate mastery of self-management behaviours. This study is designed to condense the lived experiences of people with T2D in relation to factors 'exterior' to themselves into a universal self-management inventory (Assessment of Self-Management Questionnaire in Diabetes Mellitus-External Reality; ASQ-DM-EX).
Methods: We collected responses to an online and physical survey from people living with T2D through a quantitative cross-sectional study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!