Recently, biopolymer based plastic materials are regarded as potential alternative for conventional plastics of fossil fuel origin in order to compensate depleting petroleum resources and address environmental pollution issues. Poly(lactic acid) (PLA) is one among the biopolymers which is rapidly commercialized for food packaging application. However, the demerits accompanied with PLA like brittle nature, slower crystallization rate, poor gas barrier and high ultraviolet radiation transmission properties confines its commercial application in food packaging sector. Studies on the improvement of ductility, crystallization rate and gas barrier properties are markedly reported. Much emphasis is not given in the literature on improving UV shielding properties which plays important role in preventing oxidation degradation of PLA. Therefore, the current work is focused on fabrication of eco-friendly poly(lactic acid)/rosin (RS) based biocomposite films with improved UV shielding along with ductility and oxygen barrier properties. The PLA-RS biocomposite films containing different loadings (1, 3, 5, 10 and 20wt%) of RS with an average thickness of 50μm are fabricated via solution casting technique. The PLA-RS film demonstrated noteworthy light barrier feature by shielding the passage of ∼98%, 92% and 53% in UV-B, UV-A and visible light regime, respectively. In case of UV-C region, complete blockage of UV transmission through the PLA-RS biocomposite film is noticed. In addition to this, the presence of RS in the PLA matrix brought considerable improvement in terms of ductility and oxygen barrier characteristics. This in turn indicates PLA-RS biocomposite films hold significant potential for sustainable food packaging application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.01.152DOI Listing

Publication Analysis

Top Keywords

food packaging
12
biocomposite films
12
pla-rs biocomposite
12
polylactic acid/rosin
8
packaging application
8
crystallization rate
8
gas barrier
8
barrier properties
8
ductility oxygen
8
oxygen barrier
8

Similar Publications

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. The present study examined that starch can be effectively used as raw material to develop biodegradable, edible films.

View Article and Find Full Text PDF

This study investigated the properties of films based on avocado () seed starch. A full factorial experimental design was performed using different amounts of starch (3-5 %) and glycerol (0.75-1.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

The Jerusalem artichoke (JA), a plantrelated to sunflowers and native to North America, has long been valued for its versatility, especially during periods of food scarcity. This resilient crop serves multiple purposes, functioning as a vegetable, medicinal herb, grazing crop, and even a biofuel source. In recent years, interest in JA has grown, largely due to its high nutritional profile and associated health benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!