Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation.

Pharmacol Res

Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA. Electronic address:

Published: May 2017

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2, a transcription factor) and/or inhibition of mammalian target of rapamycin (mTOR) are implicated in the suppression of vascular smooth muscle cell (VSMC) proliferation. The present study has examined the likely regulatory effects of sulforaphane (SFN, an antioxidant) on Nrf2 activation and platelet-derived growth factor (PDGF)-induced mTOR signaling in VSMCs. Using human aortic VSMCs, nuclear extraction and siRNA-mediated downregulation studies were performed to determine the role of Nrf2 on SFN regulation of PDGF-induced proliferative signaling. Immunoprecipitation and/or immunoblot studies were carried out to determine how SFN regulates PDGF-induced mTOR/p70S6K/S6 versus ERK and Akt signaling. Immunohistochemical analysis was performed to determine SFN regulation of S6 phosphorylation in the injured mouse femoral artery. SFN (5μM) inhibits PDGF-induced activation of mTOR without affecting mTOR association with raptor in VSMCs. While SFN inhibits PDGF-induced phosphorylation of p70S6K and 4E-BP1 (downstream targets of mTOR), it does not affect ERK or Akt phosphorylation. In addition, SFN diminishes exaggerated phosphorylation of S6 ribosomal protein (a downstream target of p70S6K) in VSMCs in vitro and in the neointimal layer of injured artery in vivo. Although SFN promotes Nrf2 accumulation to upregulate cytoprotective genes (e.g., heme oxygenase-1 and thioredoxin-1), downregulation of endogenous Nrf2 by target-specific siRNA reveals an Nrf2-independent effect for SFN-mediated inhibition of mTOR/p70S6K/S6 signaling and suppression of VSMC proliferation. Strategies that utilize local delivery of SFN at the lesion site may limit restenosis after angioplasty by targeting mTOR/p70S6K/S6 axis in VSMCs independent of Nrf2 activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392440PMC
http://dx.doi.org/10.1016/j.phrs.2017.02.010DOI Listing

Publication Analysis

Top Keywords

nrf2 activation
12
sfn
9
platelet-derived growth
8
vascular smooth
8
smooth muscle
8
muscle cell
8
independent nrf2
8
vsmc proliferation
8
performed determine
8
sfn regulation
8

Similar Publications

Natural coumarins represent a diverse group of secondary metabolites with a wide range of biological activities. However, their specific molecular targets have remained largely unexplored. Employing chemical proteomics, a comprehensive analysis of the protein targets of the natural coumarin fraxetin has been conducted.

View Article and Find Full Text PDF

Ovarian ischemia is a pathological condition that usually occurs due to ovarian torsion, resulting in the interruption of blood supply to the ovaries and oxygen deficiency. Silymarin (SLM) is a flavonoid complex of plant origin with pharmacological properties such as antioxidant, anti-inflammatory, and antiapoptotic effects. In this study, we investigated the effects of SLM through different pathways in rats subjected to experimental ovarian ischemia/reperfusion (I/R).

View Article and Find Full Text PDF

Feeding citrus pomace fermented with combined probiotics improves growth performance, meat quality, fatty acid profile, and antioxidant capacity in yellow-feathered broilers.

Front Vet Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Introduction: The reasonable and efficient utilization of agricultural by-products as animal feed has the capacity to not only mitigate the scarcity of conventional feedstuff but also alleviate the environmental load. This study was aimed to investigate the effects of feeding citrus pomace (CP) fermented with combined probiotics on growth performance, carcass traits, meat quality and antioxidant capacity in yellow-feathered broilers.

Methods: A cohort of 540 female yellow-feathered broilers (Qingyuan partridge chicken, 90-day-old) were randomly divided into three groups and, respectively, fed the basal diet (Control), diet containing 10% unfermented CP (UFCP) and diet containing 10% fermented CP (FCP).

View Article and Find Full Text PDF

Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis.

View Article and Find Full Text PDF

Emamectin benzoate (EMB) is an antibiotic insecticide pesticide modified from avermectin. In the current study, we performed an in-depth investigation of the protective effects of epicatechin on EMB-induced liver injury in common carps. The carps were cultured in an aquatic environment containing 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!