AI Article Synopsis

  • The study evaluated how well rough-surface implants integrate with human freeze-dried bone blocks and the new bone formation in rabbit skulls.
  • Nine rabbits had h-FDB blocks grafted and either immediate or delayed implants placed, followed by histological analysis after 12 weeks.
  • Results showed a significantly lower bone-to-implant contact for implants placed immediately compared to delayed placements, indicating that both techniques had limited success in achieving osseointegration.

Article Abstract

Purpose: To assess the extent of osseointegration with rough-surface implants and new bone formation (NBF) within human freeze-dried bone blocks (h-FDB) grafted over rabbit calvaria.

Materials And Methods: A total of 18 rectangular h-FDB blocks were stabilized bilaterally to the calvaria of nine New Zealand rabbits by two mini titanium screws each. A total of 18 rough-surface implants (5.0 × 6.0-mm) were placed, 9 simultaneously (immediate placement [IP]) on one side and 9 at 3 months after block grafting (delayed placement [DP]) on the contralateral side. At 12 weeks after the second surgical procedure, block biopsies were harvested and processed for histologic analysis. Morphometric measurements consisted of bone-to-implant contact (BIC) and the extent of NBF from the calvarial surface and outward into the block. A paired t test was applied for statistical analysis.

Results: All h-FDB blocks were integrated, and the implants showed clinical stability. Histologically, the BIC was primarily between the apical end of the implants and the host rabbit calvaria. Bone growth between the implant threads was minimal and inconsistent among all animals. Morphometric measurements showed that the mean BIC of the IP and DP implants with the blocks was 10.50% ± 5.99% and 23.06% ± 9.58%, respectively (P < .001). NBF was observed primarily in the cancellous compartment of the block adjacent to the recipient calvarial bed. The extent of NBF into the block around the IP and DP implants was 9.95% ± 8.41% and 12.90% ± 11.07%, respectively (P = 0.2).

Conclusion: In this model, a significantly lower BIC was demonstrated when implants were placed simultaneously with h-FDB block grafting compared to those placed in a two-stage mode. However, both techniques showed limited osseointegration.

Download full-text PDF

Source
http://dx.doi.org/10.11607/jomi.5366DOI Listing

Publication Analysis

Top Keywords

bone-to-implant contact
8
bone formation
8
human freeze-dried
8
freeze-dried bone
8
bone blocks
8
grafted rabbit
8
rabbit calvaria
8
rough-surface implants
8
h-fdb blocks
8
block grafting
8

Similar Publications

Objectives: The goal of this systematic review was to critically appraise the existing evidence evaluating osteoporosis' effects on dental implant osseointegration and survival rate.

Data Source: A search was conducted in two databases, PubMed/MEDLINE and Scopus, until October 2024, using the keywords 'osteoporosis,' 'osteopenia,' 'osseointegration,' and 'dental implants'. The inclusion criteria were clinical studies that evaluated the implant placement, complications, and osseointegration results in patients with osteoporosis; literature reviews and clinical studies addressing the outcome were considered; and articles written in English and published since 2000.

View Article and Find Full Text PDF

Comparison of osseointegration in commercial SLA-treated dental implants with different surface roughness: a pilot study in beagle dogs.

J Adv Prosthodont

December 2024

Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

Purpose: This pilot study investigated the effect of surface roughness on osseointegration by comparing two types of commercial SLA-treated dental implants with different surface roughness levels: moderately rough (S = 1 - 2 µm) and rough surfaces (S > 2 µm).

Materials And Methods: Two implant groups were studied: TS (rough surface) and ADD (moderately rough surface) groups. Surface characteristics were analyzed using optical profilometry and SEM.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the osseointegration properties of titanium bone implants coated with carob-mediated calcium hydroxide nanoparticles biomechanically, radiographically, and histologically on rabbit tibias.

Material And Methods: Forty coated and forty uncoated titanium alloy bone implants were inserted into 20 New Zealand rabbits; each tibia received 2 implants. The rabbits were sacrificed after 4 or 8 weeks, and samples were retrieved for biomechanical evaluation through removal torque test to assess the bond between implant and bone, radiographic evaluation through microcomputed tomography analysis to compare the bone-to-implant contact percentage and bone volume of the peri-implant area, scanning electron microscopic and histologic evaluation through hematoxylin and eosin stain.

View Article and Find Full Text PDF

This study investigated the effect of platelet-rich fibrin (PRF) on bone healing around implants placed in elevated sinus cavities. Forty New Zealand albino rabbits were divided into eight groups, based on the time of sacrifice (14 or 40 days) and the material used: blood clot (control), hydroxyapatite (HA) from bovine bone, HA combined with PRF, and PRF alone. Each group consisted of five animals (n = 5).

View Article and Find Full Text PDF

ZygoPlanner: A three-stage graphics-based framework for optimal preoperative planning of zygomatic implant placement.

Med Image Anal

November 2024

Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Zygomatic implant surgery is an essential treatment option of oral rehabilitation for patients with severe maxillary defect, and preoperative planning is an important approach to enhance the surgical outcomes. However, the current planning still heavily relies on manual interventions, which is labor-intensive, experience-dependent, and poorly reproducible. Therefore, we propose ZygoPlanner, a pioneering efficient preoperative planning framework for zygomatic implantation, which may be the first solution that seamlessly involves the positioning of zygomatic bones, the generation of alternative paths, and the computation of optimal implantation paths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!