Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus.

PLoS One

Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America.

Published: August 2017

Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315327PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171695PLOS

Publication Analysis

Top Keywords

ability cryptococcus
20
cryptococcus grow
12
infectious propagules
12
cryptococcus
10
thaliana eucalyptus
8
cryptococcus colonize
8
colonize live
8
undergo filamentation
8
plant materials
8
saprobic association
8

Similar Publications

A Tachyplesin Antimicrobial Peptide from Theraphosidae Spiders with Potent Antifungal Activity Against .

Microorganisms

December 2024

Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China.

The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti- peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species by utilizing bioinformatic tools.

View Article and Find Full Text PDF

is a globally distributed human fungal pathogen that can cause cryptococcal meningitis with high morbidity and mortality. In this study, we identified an anaphase-promoting complex (APC) activator, Cdh1, and examined its impact on the virulence of . Our subcellular localization analysis revealed that Cdh1 is situated in the nucleus of .

View Article and Find Full Text PDF

Unlabelled: The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen ( ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood.

View Article and Find Full Text PDF

Cryptococcus neoformans is a pathogenic basidiomycetous yeast that primarily infects immunocompromised individuals. Fatal outcome of cryptococcosis depends on the ability of C. neoformans to sense and adapt to 37°C.

View Article and Find Full Text PDF
Article Synopsis
  • Immune responses to acute infections share common elements across different pathogens, which can aid in creating better diagnostics and treatments.
  • Analysis of gene expression in white blood cells shows these common patterns, helping to identify the type of infection (viral or bacterial).
  • A study identified a 41-gene signature that classifies infections with high accuracy and a smaller 21-gene subset that distinguishes between specific infections, underscoring the potential for developing effective diagnostic tools.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!