Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide nanowires, zinc oxide or mesoporous silica nanoparticles, for cancer and metastasis treatment with the advantage of operating directly at the bio-molecular scale. Among them, carbon nanotubes emerged as valid candidates not only for drug delivery, but also as a valuable tool in cancer imaging and physical ablation. Nevertheless, deep investigations about carbon nanotubes' potential bio-compatibility and cytotoxicity limits should be also critically addressed. In the present review, after introducing carbon nanotubes and their promising advantages and drawbacks for fighting cancer, we want to focus on the numerous and different ways in which they can assist to reach this goal. Specifically, we report on how they can be used not only for drug delivery purposes, but also as a powerful ally to develop effective contrast agents for tumors' medical or photodynamic imaging, to perform direct physical ablation of metastasis, as well as gene therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371782 | PMC |
http://dx.doi.org/10.3390/bios7010009 | DOI Listing |
Chemistry
January 2025
The University of Electro-Communications: Denki Tsushin Daigaku, Department of Engineering Science, JAPAN.
(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity. The substituents at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, Istanbul Technical University, Istanbul 34469, Türkiye.
In this study, a bovine serum albumin (BSA)-coated magnetic single-walled carbon nanotube (mCNT) was synthesized using covalent functionalization. Mitoxantrone (MTO) was chosen as a model drug, and loading/release profiles of mCNTs were evaluated. To synthesize BSA-coated mCNT, 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide and -hydroxysuccinimide were used as cross-linking agents.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:
The escalating atmospheric CO₂ concentration urgently demands ecologically friendly mitigation strategies. Compared to alternative catalysts, carbonic anhydrase (CA) demonstrates exceptionally high catalytic efficiency in CO₂ hydration reactions. Nevertheless, traditional CA immobilization techniques exhibit peak enzymatic activity exclusively at optimal temperatures, consequently constraining their effective application across diverse environmental thermal conditions in industrial settings.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China; Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170 Thailand. Electronic address:
Fe-N-C catalysts have emerged as the most promising alternatives to commercial Pt/C catalysts for oxygen reduction reaction (ORR) due to their cost-effectiveness and favorable activity. Herein, a dual-site Fe/FeN-NC catalyst was synthesized via a green, in situ doping strategy using two-dimensional Fe-doped ZIF-L as a nitrogen-rich precursor. The catalyst integrated Fe nanoparticles (NPs) and FeN sites anchored on carbon nanotubes, intertwined with nitrogen-doped porous carbon nanosheets, achieving a high active site density and graphitisation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!