Goose erythrocyte membranes were isolated and tested for their ability to compete with red cell receptors for vesicular stomatitis virus (VSV) attachment and fusion at acidic pH. Crude membranes, solubilized with Triton X-100, Tween 80 and octyl-beta-D-glucopyranoside, showed a dose-dependent inhibitory effect on virus binding and haemolysis. The chemical nature of the active molecules was investigated by enzyme digestion and by separation of purified components. Only the lipid moiety, specifically phospholipid and glycolipid, was found to inhibit VSV attachment; a more detailed analysis of these molecules showed that phosphatidylinositol, phosphatidylserine and GM3 ganglioside were responsible for the inhibitory activity and could therefore represent VSV binding sites on goose erythrocyte membranes. Removal of negatively charged groups from these molecules by enzymic treatment significantly reduced their activity, suggesting that electrostatic interactions play an important role in the binding of VSV to the cell surface. Enzymic digestion of whole erythrocytes confirmed the involvement of membrane lipid molecules in the cell surface receptor for VSV.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-68-9-2359DOI Listing

Publication Analysis

Top Keywords

vesicular stomatitis
8
stomatitis virus
8
attachment fusion
8
fusion acidic
8
goose erythrocyte
8
erythrocyte membranes
8
vsv attachment
8
cell surface
8
vsv
5
characterization membrane
4

Similar Publications

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.

View Article and Find Full Text PDF

Phenotypic Differences Between the Epidemic Strains of Vesicular Stomatitis Virus Serotype Indiana 98COE and IN0919WYB2 Using an In-Vivo Pig () Model.

Viruses

December 2024

National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.

During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.

View Article and Find Full Text PDF

Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 18,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS.

View Article and Find Full Text PDF

Ovarian cancer is the deadliest gynecologic cancer, and with the majority of patients dying within the first five years of diagnosis, new therapeutic options are required. The small guanosine triphosphatase (GTPase) Ras-related nuclear protein (Ran) has been reported to be highly expressed in high-grade serous ovarian cancers (HGSOCs) and associated with poor outcomes. Blocking Ran function or preventing its expression were shown to be promising treatment strategies, however, there are currently no small molecule inhibitors available to specifically inhibit Ran function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!