The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold.

J Am Chem Soc

Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.

Published: March 2017

Much effort has been devoted in the development of efficient catalysts for electrochemical reduction of CO. Molecular level understanding of electrode-mediated process, particularly the role of bicarbonate in increasing CO reduction rates, is still lacking due to the difficulty of directly probing the electrochemical interface. We developed a protocol to observe normally invisible reaction intermediates with a surface enhanced spectroscopy by applying square-wave potential profiles. Further, we demonstrate that bicarbonate, through equilibrium exchange with dissolved CO, rather than the supplied CO, is the primary source of carbon in the CO formed at the Au electrode by a combination of in situ spectroscopic, isotopic labeling, and mass spectroscopic investigations. We propose that bicarbonate enhances the rate of CO production on Au by increasing the effective concentration of dissolved CO near the electrode surface through rapid equilibrium between bicarbonate and dissolved CO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b13287DOI Listing

Publication Analysis

Top Keywords

role bicarbonate
8
electrochemical reduction
8
bicarbonate
5
central role
4
bicarbonate electrochemical
4
reduction carbon
4
carbon dioxide
4
dioxide gold
4
gold effort
4
effort devoted
4

Similar Publications

Bicarbonate Within: A Hidden Modulator of Antibiotic Susceptibility.

Antibiotics (Basel)

January 2025

Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.

Since its standardization, clinical antimicrobial susceptibility testing (AST) has relied upon a standard medium, Mueller-Hinton Broth/Agar (MHB/A), to determine antibiotic resistance. However, this microbiologic medium bears little resemblance to the host milieu, calling into question the physiological relevance of resistance phenotypes it reveals. Recent studies investigating antimicrobial susceptibility in mammalian cell culture media, a more host-mimicking environment, demonstrate that exposure to host factors significantly alters susceptibility profiles.

View Article and Find Full Text PDF

Background: Anorexia nervosa has the highest mortality rate of any psychiatric disorder, and purging behaviors can cause a fatal electrolyte and acid-base imbalance. Routine laboratory testing during inpatient care is essential because these patients often provide inaccurate information about their diet and purging behaviors. However, blood gas analysis for an acid-base evaluation is rarely performed in the psychiatric setting because psychiatrists are not accustomed to evaluating the results.

View Article and Find Full Text PDF

Background: Lungs of people with Cystic Fibrosis (pwCF) are characterized by chronic inflammation and infection with P. aeruginosa. High levels of IL-17 A and F have been observed in sputum of pwCF and the interleukin-17(IL-17) family (A-to-F) has been suggested to play a key role in CF pulmonary disease.

View Article and Find Full Text PDF

Inorganic anions such as chloride (Cl), nitrate (), sulfate (), carbonate (), bicarbonate (), dihydrogen phosphate (), fluoride (F) are ubiquitous in water matrices, play a significant role in the degradation of organic pollutants by Fenton process. In the present study, the performance of Fenton process in the presence of these anions was studied using phenol as a model compound along with the underlying mechanism and their tolerance limit. The presence of these anions affects the rate constant of the Fenton process and decreases in the following order, ---Cl >  >  >  > F.

View Article and Find Full Text PDF

Integrating proteomics and metabolomics to elucidate the regulatory mechanisms of pimpled egg production in chickens: Multi-omics analysis of the mechanism of pimpled egg formation.

Poult Sci

January 2025

Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China. Electronic address:

Eggshells not only protect the contents of the egg from external damage but are also a key factor influencing consumer choice, second only to price. In the later stages of egg production, the incidence of pimpled eggs significantly increases, severely affecting the hatchability and food safety of the eggs. This study compares the differences in the uterine proteomes and metabolomes of hens producing pimpled eggs and those producing normal eggs, aiming to identify the proteins and metabolites that may play a crucial role in the formation of pimpled eggs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!