The biological importance of microtubules in mitosis makes them an interesting target for the development of anticancer agents. In this study, a series of novel chalcone-containing shikonin derivatives was designed, synthesized, and evaluated for biological activities. Among them, derivative PMMB-259 [(R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl (E)-2-(4-(3-oxo-3-(3-(trifluoromethoxy)phenyl)prop-1-en-1-yl)phenoxy)acetate] was identified as a potent inhibitor of tubulin polymerization. Further investigation confirmed that PMMB-259 can induce MCF-7 cell apoptosis, reduce the mitochondrial transmembrane potential, and arrest the cell cycle at the G /M phase. Moreover, the morphological variation of treated cells was visualized by confocal microscopy. The results, along with docking simulations, further indicated that PMMB-259 can bind well to tubulin at the colchicine site. Overall, these studies may provide a new molecular scaffold for the further development of antitumor agents that target tubulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.201700001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!