Alpha-beta hydrolase domain-containing 5 (ABHD5), the defective gene in human Chanarin-Dorfman syndrome, is a highly conserved regulator of adipose triglyceride lipase (ATGL)-mediated lipolysis that plays important roles in metabolism, tumor progression, viral replication, and skin barrier formation. The structural determinants of ABHD5 lipolysis activation, however, are unknown. We performed comparative evolutionary analysis and structural modeling of ABHD5 and ABHD4, a functionally distinct paralog that diverged from ABHD5 ~500 million years ago, to identify determinants of ABHD5 lipolysis activation. Two highly conserved ABHD5 amino acids (R299 and G328) enabled ABHD4 (ABHD4 N303R/S332G) to activate ATGL in Cos7 cells, brown adipocytes, and artificial lipid droplets. The corresponding ABHD5 mutations (ABHD5 R299N and ABHD5 G328S) selectively disrupted lipolysis without affecting ATGL lipid droplet translocation or ABHD5 interactions with perilipin proteins and ABHD5 ligands, demonstrating that ABHD5 lipase activation could be dissociated from its other functions. Structural modeling placed ABHD5 R299/G328 and R303/G332 from gain-of-function ABHD4 in close proximity on the ABHD protein surface, indicating they form part of a novel functional surface required for lipase activation. These data demonstrate distinct ABHD5 functional properties and provide new insights into the functional evolution of ABHD family members and the structural basis of lipase regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314347PMC
http://dx.doi.org/10.1038/srep42589DOI Listing

Publication Analysis

Top Keywords

abhd5
15
abhd5 lipolysis
12
lipolysis activation
12
highly conserved
8
determinants abhd5
8
structural modeling
8
modeling abhd5
8
lipase activation
8
lipolysis
5
activation
5

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a range of liver conditions marked by the buildup of fat, spanning from simple fatty liver to more advanced stages like metabolic dysfunction-associated steatohepatitis and cirrhosis.

Methods: Our in-depth analysis of PNPLA3_WT and mutants (I148M (MT1) and C15S (MT2)) provides insights into their structure-function dynamics in lipid metabolism, especially lipid droplet hydrolysis and ABHD5 binding. Employing molecular docking, binding affinity, MD analysis, dissociation constant, and MM/GBSA analysis, we delineated distinct binding characteristics between wild-type and mutants.

View Article and Find Full Text PDF

Lipid droplet targeting of the lipase co-activator ABHD5 and the fatty liver disease-causing variant PNPLA3 I148M is required to promote liver steatosis.

J Biol Chem

January 2025

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202. Electronic address:

The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).

View Article and Find Full Text PDF

Background & Aims: Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis.

Methods: The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry.

View Article and Find Full Text PDF

Mucopolysaccharidosis (MPS) comprises a group of inherited metabolic diseases. Each MPS type is caused by a deficiency in the activity of one kind of enzymes involved in glycosaminoglycan (GAG) degradation, resulting from the presence of pathogenic variant(s) of the corresponding gene. All types/subtypes of MPS, which are classified on the basis of all kinds of defective enzymes and accumulated GAG(s), are severe diseases.

View Article and Find Full Text PDF

Identification of transcription factor-lipid droplet-related gene biomarkers for the prognosis of post-acute myocardial infarction-induced heart failure.

Front Cardiovasc Med

December 2024

Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Introduction: Patients with acute myocardial infarction (AMI) are at high risk of progressing to heart failure (HF). Recent research has shown that lipid droplet-related genes (LDRGs) play a crucial role in myocardial metabolism following MI, thereby influencing the progression to HF.

Methods: Weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were used to screen a transcriptome dataset of whole blood cells from AMI patients with (AMI HF,  = 16) and without progression (AMI no-HF,  = 16).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!