Childhood absence epilepsy (CAE) is an epilepsy syndrome with seizures occurring in the early childhood, highlighting that seizures susceptibility in CAE is dependent on brain development. The Notch 1 signalling pathway is important in brain development, yet the role of the Notch1 signalling pathway in CAE remains elusive. We here explored Notch1 and its modulator notchless homologue 1 (NLE1) expression in WAG/Rij and control rats using immunohistochemistry. Functional Notch 1 effects were assessed in WAG/Rij rats in vivo. WAG/Rij rats lack the developmental increase in cortical Notch1 and NLE 1 mRNA expression seen in controls, and Notch 1 and NLE1 mRNA and protein expression were lower in somatosensory cortices of WAG/Rij rats when compared to controls. This coincided with an overall decreased cortical GFAP expression in the early development in WAG/Rij rats. These effects were region-specific as they were not observed in thalamic tissues. Neuron-to-glia ratio as a marker of the impact of Notch signalling on differentiation was higher in layer 4 of somatosensory cortex of WAG/Rij rats. Acute application of Notch 1 agonist Jagged 1 suppressed, whereas DAPT, a Notch antagonist, facilitated spike and wave discharges (SWDs) in WAG/Rij rats. These findings point to Notch1 as an important signalling pathway in CAE which likely shapes architectural organization of the somatosensory cortex, a region critically involved in developmental epileptogenesis in CAE. More immediate effects of Notch 1 signalling are seen on in vivo SWDs in CAE, pointing to the Notch 1 pathway as a possible treatment target in CAE.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-017-1371-9DOI Listing

Publication Analysis

Top Keywords

wag/rij rats
24
notch signalling
12
signalling pathway
12
nle1 expression
8
absence epilepsy
8
brain development
8
notch
8
notch1 signalling
8
pathway cae
8
somatosensory cortex
8

Similar Publications

In the present study, the effects of the acetylcholinesterase (AChE) enzyme inhibitor rivastigmine (RIVA) on spike-wave discharges (SWDs), memory impairment, anxiety-like behavior, and the transient receptor potential vanilloid 1 (TRPV1) gene expression were investigated in genetic absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. After tripolar electrodes were implanted on the WAG/Rij rats' skulls, single doses of 0.125, 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how microgravity and galactic cosmic rays (GCRs) influence behavioral performance and metabolic pathways in male Fischer rats, highlighting a gap in previous research regarding control conditions for hindlimb unloading (HU).
  • Male rats were subjected to total body irradiation and HU conditions, with plasma and brain tissue analyzed after 6 months to assess long-term metabolic changes.
  • Results showed significant interactions between radiation and HU, with various metabolic pathways affected in the plasma and brain, indicating complex interactions between stressors that could impact spaceflight crew health.
View Article and Find Full Text PDF

This study aimed to investigate the role of the nigrostriatal dopaminergic system in the modulation of absence epilepsy. Immunochemical analysis of the rostral pole of the substantia nigra pars compacta (SNpc) was conducted on 13 adult male Wistar Albino rats from Rijswijk rats. The rostral pole of the SNpc included the dorsal and lateral parts.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study using WAG/Rij rats, HFD led to worsened absence seizures, depressive-like behaviors, and cognitive performance issues, despite no significant weight gain or hyperglycemia.
  • * Switching from HFD to a normal calorie diet (NCD) for 12 weeks improved seizure frequency and behavioral issues, correlating with reductions in inflammation in both the gut and brain, highlighting the negative impact of HFD and potential benefits of dietary changes.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how different types of epilepsy in rats show specific electrical patterns called spike-wave complexes (SWCs) during seizures.
  • They used special software to analyze the frequency of these SWCs in various models of epilepsy, including brain injuries and genetic conditions.
  • The research found that while the spike part of these complexes was similar across different models, the wave part varied a lot, which could help understand seizures better and develop treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!