The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster.

Nanoscale

Departament de Química Inorgànica i Orgànica (Secció Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain. and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08020 Barcelona, Spain.

Published: March 2017

The labeling of proteins with heavy atom clusters is of paramount importance in biomedical research, but its detailed molecular mechanism remains unknown. Here we uncover it for the particular case of the anti-influenza N9 neuraminidase NC10 antibody against a glutathione-coated gold cluster by means of ab initio QM/MM calculations. We show that the labeling reaction follows an associative double S2-like reaction mechanism, involving a proton transfer, with low activation barriers only if one of the two distinct peptide/peptidic ligands (the one that occupies the side position) is substituted. Positively charged residues in the vicinity of the incoming thiol result in strong interactions between the antibody and the AuMPC, favoring the ligand exchange reaction for suitable protein mutants. These results pave the way for future investigations aimed at engineering biomolecules to increase their reactivity towards a desired gold atom cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr08498bDOI Listing

Publication Analysis

Top Keywords

molecular mechanism
8
ligand exchange
8
exchange reaction
8
antibody glutathione-coated
8
glutathione-coated gold
8
gold cluster
8
mechanism ligand
4
reaction
4
reaction antibody
4
cluster labeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!