CK2 is a ubiquitous, constitutively active, highly pleiotropic, acidophilic Ser/Thr protein kinase whose holoenzyme is composed of two catalytic (α and/or α') subunits and a dimer of a non-catalytic β subunit. Abnormally high CK2 level/activity is often associated with malignancy and a variety of cancer cells have been shown to rely on it to escape apoptosis. To gain information about the actual "druggability" of CK2 and to dissect CK2 dependent cellular processes that are instrumental to the establishment and progression of neoplasia we have exploited the CRISPR/Cas9 genome editing technology to generate viable clones of C2C12 myoblasts devoid of either both the CK2 catalytic subunits or its regulatory β-subunit. Suppression of both CK2 catalytic subunits promotes the disappearance of the β-subunit as well, through its accelerated proteasomal degradation. A quantitative proteomics analysis of CK2α/α' versus wild type cells shows that knocking out both CK2 catalytic subunits causes a rearrangement of the proteomics profile, with substantially altered level ( > 50%) of 240 proteins, 126 of which are up-regulated, while the other are down-regulated. A functional analysis reveals that up- and down-regulated proteins tend to be segregated into distinct sub-cellular compartments and play different biological roles, consistent with a global rewiring underwent by the cell to cope with the lack of CK2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314375PMC
http://dx.doi.org/10.1038/srep42409DOI Listing

Publication Analysis

Top Keywords

ck2 catalytic
12
catalytic subunits
12
quantitative proteomics
8
proteomics analysis
8
analysis ck2α/α'
8
ck2
8
generation quantitative
4
ck2α/α' cells
4
cells ck2
4
ck2 ubiquitous
4

Similar Publications

The serine/threonine protein kinase CK2, a tetramer composed of a regulatory dimer (CK2β2) bound to two catalytic subunits CK2α, is a well-established therapeutic target for various pathologies, including cancer and viral infections. Several types of CK2 inhibitors have been developed, including inhibitors that bind to the catalytic ATP-site, bivalent inhibitors that occupy both the CK2α ATP-site and the αD pocket, and inhibitors that target the CK2α/CK2β interface. Interestingly, the bivalent inhibitor AB668 shares a similar chemical structure with the interface inhibitor CCH507.

View Article and Find Full Text PDF

CK2α-mediated phosphorylation of DUB3 promotes YAP1 stability and oncogenic functions.

Cell Death Dis

January 2025

Department of General Surgery, Guangzhou Red Cross Hospital/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, China.

The aberrant upregulation of Yes-associated protein 1 (YAP1) in a variety of solid cancers contributes to tumor progression and poor clinical outcomes, rendering it an appealing therapeutic target. However, effective therapies to directly target YAP1 remain challenging. In this study, we perform a high-throughput screening and identify Casein kinase II (CK2) as an uncharacterized upstream regulator of YAP1 turnover in cancer cells of ovarian cancer and several other cancer types.

View Article and Find Full Text PDF

The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) is characterized by the fusion protein BCR::ABL1, a constitutively active tyrosine kinase. The frontline treatment, represented by tyrosine kinase inhibitors (TKIs), has dramatically improved the clinical outcomes of patients. However, TKI resistance through various mechanisms has been reported.

View Article and Find Full Text PDF

CIGB-300 internalizes and impairs viability of NSCLC cells lacking actionable targets by inhibiting casein kinase-2 signaling.

Sci Rep

October 2024

China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan Province, People's Republic of China.

Article Synopsis
  • Advanced Non-Small Cell Lung Cancer (NSCLC) has low response rates, highlighting the need for new targeted therapies, such as the CK2 inhibitor CIGB-300.
  • CIGB-300 effectively reduces the viability and proliferation of lung cancer cells, including Lung Adenocarcinoma and Lung Squamous Carcinoma, by interfering with CK2 signaling, which plays a critical role in tumor survival.
  • Intravenous administration of CIGB-300 in experimental models demonstrates its anti-tumor effects, supporting its potential as a treatment option for advanced NSCLC with limited therapies available.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!