Frustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being "in between" the liquid and the crystalline state. In contrast, the liquid-crystal phase in supercooled n-butanol is found to inhibit transformation to the crystal. The observed frustrated phase is a template for similar ordering in other liquids and likely to play an important role in supercooling and liquid-liquid transitions in many other molecular liquids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314399PMC
http://dx.doi.org/10.1038/srep42439DOI Listing

Publication Analysis

Top Keywords

frustration crystallisation
8
liquid-crystal phase
8
liquid-liquid transitions
8
liquid-crystal
4
crystallisation liquid-crystal
4
phase frustration
4
crystallisation locally
4
locally favoured
4
favoured structures
4
structures critically
4

Similar Publications

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF
Article Synopsis
  • Bottlebrush block polymers feature densely grafted side chains from a backbone, allowing for large ordered morphologies suitable for applications like photonic crystals.
  • The study focused on creating a library of 50 triblock terpolymers (PLA-PEP-PS) through advanced polymerization techniques, leading to structures with complex phase behaviors.
  • Results indicated diverse mesoscopic structures and tunable unit cell dimensions, showcasing the potential of multiblock bottlebrushes for varied material applications.
View Article and Find Full Text PDF

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

Competing Hexagonal and Square Lattices on a Spherical Surface.

Nano Lett

January 2025

School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.

The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state and soft-matter physics. Confined on a spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report here the emergence of new types of disclination patterns: domain and counter-domain defects, when hexagonal and square patterns coexist.

View Article and Find Full Text PDF

Epitaxial Stabilization of a Pyrochlore Interface between Weyl Semimetal and Spin Ice.

Nano Lett

January 2025

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.

Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!