Waste-to-energy projects are an increasingly prominent component of future energy portfolios. Landfill gas (LFG)-to-energy (LFGTE) projects are particularly important as they address greenhouse gas emissions. Contaminants in LFG may hamper these projects both from environmental and economic standpoints. The purpose of this review is to highlight key aspects (LFG composition ranges, LFG flowrates, and allowable tolerances for LFGTE technologies, performance and costs for contaminant removal by adsorption). Removal of key contaminants, HS and siloxanes, by adsorption are surveyed in terms of adsorption capacities and regeneration abilities. Based on the open literature, costing analyses are tabulated and discussed. The findings indicate economics of contaminant removal depend heavily on the feed concentrations of contaminants, allowable tolerances for the LFGTE technology, and the current market for the product. Key trends, identification of challenges, and general purification guidelines for purifying LFG for energy projects are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2017.02.001 | DOI Listing |
RSC Adv
January 2025
Packing and Packaging Materials Department, Institute of Chemical Industries Research, National Research Centre 33 El Behooth St., Dokki Giza Egypt +20 2 33371718.
Nanofiltration (NF) separation technology is a low-pressure filtration process, which is highly efficient and environmentally friendly. As a result, it has found wide application in water treatment. This work describes the preparation of flat sheet membranes the phase inversion method using blends of hyperbranched polyester amide (PEA) and polyether sulphone (PES) in definite ratios.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China.
Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:
Clothianidin (CTD), a highly water soluble neonicotinoid insecticide, easily enters water through runoff. Developing eco-friendly materials to degrade CTD is essential. Nano zero valent iron (nZVI) is effective for contaminant removal, but it deactivates due to agglomeration.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Science and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
Meso/microporous nano silica modified with macromolecular polymers produces attractive hybrids that repel water and have a hydrophobic surface, making them highly effective for targeting and eliminating organic contaminants in aquatic environments. In this study, nano silica was functionalized with silicone oil, an oligomeric siloxane derivative, to produce a hydrophobic silica nano hybrid characterized by a non-wetting water contact angle of 139°. This hydrophobic hybrid nano silica showed a sustainable floating nature on water even in turbulent streams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!