A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Is posture-related craniospinal compliance shift caused by jugular vein collapse? A theoretical analysis. | LitMetric

Is posture-related craniospinal compliance shift caused by jugular vein collapse? A theoretical analysis.

Fluids Barriers CNS

Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.

Published: February 2017

Background: Postural changes are related to changes in cerebrospinal fluid (CSF) dynamics. While sitting up leads to a decrease in cranial CSF pressure, it also causes shifts in the craniospinal CSF volume and compliance distribution. We hypothesized that jugular vein collapse in upright posture is a major contributor to these shifts in CSF volume and compliance.

Methods: To test this hypothesis, we implemented a mathematical lumped-parameter model of the CSF system and the relevant parts of the cardiovascular system. In this model, the CSF and the venous system are each divided into a cranial and a spinal part. The pressures in these cranial and spinal portions differ by the posture-dependent hydrostatic pressure columns in the connecting vessels. Jugular collapse is represented by a reduction of the hydrostatic pressure difference between cranial and spinal veins. The CSF pressure-volume relationship is implemented as a function of the local CSF to venous pressure gradient. This implies that an increase in CSF volume leads to a simultaneous displacement of blood from adjacent veins. CSF pulsations driven by the cardiovascular system are introduced through a pulsating cranial arterial volume.

Results: In upright posture, the implemented CSF pressure-volume relationship shifts to lower cranial CSF pressures compared to the horizontal position, leading to a decrease in cranial CSF pressure when sitting up. Concurrently, the compliance of the spinal compartment decreases while the one of the cranial compartment increases. With this, in upright posture only 10% of the CSF system's compliance is provided by the spinal compartment compared to 35% in horizontal posture. This reduction in spinal compliance is accompanied by a caudal shift of CSF volume. Also, the ability of the spinal CSF compartment to compensate for cerebral arterial volume pulsations reduces in upright posture, which in turn reduces the calculated craniospinal CSF flow pulsations.

Conclusion: The mathematical model enabled us to isolate the effect of jugular collapse and quantify the induced shifts of compliance and CSF volume. The good concordance of the modelled changes with clinically observed values indicates that jugular collapse can be considered a major contributor to CSF dynamics in upright posture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314698PMC
http://dx.doi.org/10.1186/s12987-017-0053-6DOI Listing

Publication Analysis

Top Keywords

csf volume
20
upright posture
20
csf
19
cranial csf
12
cranial spinal
12
jugular collapse
12
jugular vein
8
csf dynamics
8
cranial
8
decrease cranial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!