Multiple myeloma is a debilitating malignancy arising from plasma cells. These malignant plasma cells called myeloma cells proliferate and infiltrate the bone marrow. The disease is characterized by the presence of a monoclonal protein in plasma and/or the urine. In this report, we present a case of biclonal multiple myeloma which showed two M bands on serum protein electrophoresis. The patient had elevated serum IgA and IgG levels. To reveal the nature of M bands or clonality, serum Immunofixation study was performed which revealed IgA with Lambda and IgG with Kappa light chains. Such pattern is very rare if we consider the various immunofixation patterns observed in different gammopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296419 | PMC |
http://dx.doi.org/10.7860/JCDR/2016/22466.8984 | DOI Listing |
N Engl J Med
January 2025
Centre Hospitalier Universitaire de Lille, Lille, France
N Engl J Med
January 2025
Tan Tock Seng Hospital, Singapore, Singapore
Target Oncol
January 2025
Berenson Cancer Center, West Hollywood, CA, USA.
Multiple myeloma (MM) is a bone-marrow-based cancer of plasma cells. Over the last 2 decades, marked treatment advances have led to improvements in the overall survival (OS) of patients with this disease. Key developments include the use of chemotherapy, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies.
View Article and Find Full Text PDFEur J Prev Cardiol
January 2025
Department of Medicine, Mount Auburn Hospital, Harvard Medical School, 330 Mt Auburn St, Cambridge, MA 02138, USA.
J Immunother Cancer
January 2025
Rapa Therapeutics, Rockville, Maryland, USA.
Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!