In contrast to results with bacterial suspensions, phagocytosis of unopsonized bacteria readily occurs when bacteria are adhered to glass or plastic surfaces. However, in contrast to neutrophils, alveolar macrophages produced much less DNA denaturation as measured by acridine orange metachromasia of phagocytized Staphylococcus aureus. We have studied the phagocytosis of unopsonized surface-adherent S. aureus and the subsequent production of reactive oxygen species by peripheral blood neutrophils, monocytes, and alveolar macrophages. Phagocyte-free systems were then used to show the relationship of the reactive oxygen species produced by neutrophils and alveolar macrophages and the denaturation of unopsonized S. aureus DNA with acridine orange. Peripheral blood neutrophils, monocytes, and alveolar macrophages from normal human volunteers were added to vials with adherent S. aureus without opsonin. Bacterial uptake and luminol- and lucigenin-dependent chemiluminescence were measured. Neutrophils developed much greater luminol-dependent chemiluminescence than monocytes or alveolar macrophages. Compared with neutrophils and monocytes, alveolar macrophages developed significantly greater concentrations of superoxide, as measured by lucigenin-dependent chemiluminescence and ferricytochrome c reduction. These findings suggested that products of the myeloperoxidase-hydrogen peroxide-halide pathway were generated when peripheral blood neutrophils were stimulated and that alveolar macrophages primarily produced superoxide. When these reactive oxygen species were generated in phagocyte-free systems containing S. aureus, products of the myeloperoxidase-hydrogen peroxide-halide pathway produced denaturation of S. aureus DNA, whereas superoxide did not. Thus, differences in reactive oxygen species produced during phagocytosis may be related to the different capacities of neutrophils and alveolar macrophages to denature unopsonized adherent S. aureus DNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC260720 | PMC |
http://dx.doi.org/10.1128/iai.55.10.2398-2403.1987 | DOI Listing |
Int J Med Sci
January 2025
Department of Respiratory and Critical Medicine, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, Guangdong Province, China.
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous respiratory disorder characterized by persistent airflow limitation. The diverse pathogenic mechanisms underlying COPD progression remain incompletely understood. Macrophages, serving as the most representative immune cells in the respiratory tract, constitute the first line of innate immune defense and maintain pulmonary immunological homeostasis.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea.
Understanding the molecular interactions between porcine reproductive and respiratory syndrome viruses (PRRSVs) and host cells is crucial for developing effective strategies against PRRSV. CD163, predominantly expressed in porcine macrophages and monocytes, is a key receptor for PRRSV infection. CD169, also known as Sialoadhesin, has emerged as a potential receptor facilitating PRRSV internalization.
View Article and Find Full Text PDFPharm Res
January 2025
Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103, Leipzig, Germany.
Introduction: In vitro screening of macrophages for drug-induced effects, such as phospholipidosis, is useful for detecting potentially problematic compounds in the preclinical development of oral inhaled products. High-content image analysis (HCIA) is a multi-parameter approach for cytotoxicity screening. This study provides new insights into HCIA-derived response patterns of murine J774A.
View Article and Find Full Text PDFNat Rev Immunol
January 2025
Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M.
View Article and Find Full Text PDFRev Bras Parasitol Vet
January 2025
Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
A total of 384 animals (sheep, goat, cattle, and buffalo) were examined for the presence of hydatid cysts only in the lungs. The lung tissue samples associated with the hydatid cyst were collected immediately after slaughter, followed by fixation in 10% formalin. The fixed tissue was subjected to paraffin embedding technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!