Universality of the emergent scaling in finite random binary percolation networks.

PLoS One

The School of Civil Engineering, The University of Sydney, Sydney, New South Wales, Australia.

Published: August 2017

In this paper we apply lattice models of finite binary percolation networks to examine the effects of network configuration on macroscopic network responses. We consider both square and rectangular lattice structures in which bonds between nodes are randomly assigned to be either resistors or capacitors. Results show that for given network geometries, the overall normalised frequency-dependent electrical conductivities for different capacitor proportions are found to converge at a characteristic frequency. Networks with sufficiently large size tend to share the same convergence point uninfluenced by the boundary and electrode conditions, can be then regarded as homogeneous media. For these networks, the span of the emergent scaling region is found to be primarily determined by the smaller network dimension (width or length). This study identifies the applicability of power-law scaling in random two phase systems of different topological configurations. This understanding has implications in the design and testing of disordered systems in diverse applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312937PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172298PLOS

Publication Analysis

Top Keywords

emergent scaling
8
binary percolation
8
percolation networks
8
universality emergent
4
scaling finite
4
finite random
4
random binary
4
networks
4
networks paper
4
paper apply
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!