Background: Despite a non-decreasing HIV epidemic, international donors are soon expected to withdraw funding from Kazakhstan. Here we analyze how allocative, implementation, and technical efficiencies could strengthen the national HIV response under assumptions of future budget levels.
Methodology: We used the Optima model to project future scenarios of the HIV epidemic in Kazakhstan that varied in future antiretroviral treatment unit costs and management expenditure-two areas identified for potential cost-reductions. We determined optimal allocations across HIV programs to satisfy either national targets or ambitious targets. For each scenario, we considered two cases of future HIV financing: the 2014 national budget maintained into the future and the 2014 budget without current international investment.
Findings: Kazakhstan can achieve its national HIV targets with the current budget by (1) optimally re-allocating resources across programs and (2) either securing a 35% [30%-39%] reduction in antiretroviral treatment drug costs or reducing management costs by 44% [36%-58%] of 2014 levels. Alternatively, a combination of antiretroviral treatment and management cost-reductions could be sufficient. Furthermore, Kazakhstan can achieve ambitious targets of halving new infections and AIDS-related deaths by 2020 compared to 2014 levels by attaining a 67% reduction in antiretroviral treatment costs, a 19% [14%-27%] reduction in management costs, and allocating resources optimally.
Significance: With Kazakhstan facing impending donor withdrawal, it is important for the HIV response to achieve more with available resources. This analysis can help to guide HIV response planners in directing available funding to achieve the greatest yield from investments. The key changes recommended were considered realistic by Kazakhstan country representatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313190 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169530 | PLOS |
Viruses
December 2024
Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
The high genetic variability of HIV-1 and the emergence of transmitted drug resistance (TDR) can impact treatment efficacy. In this study, we investigated the prevalent HIV-1 genotypes and drug-resistance-associated mutations in drug-naïve HIV-1 individuals in Cabo Verde. The study, conducted between 2018 and 2019, included drug-naïve HIV-1 individuals from the São Vicente, Boa Vista, Fogo, and Santiago islands.
View Article and Find Full Text PDFViruses
December 2024
HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.
Islatravir (ISL) is the first-in-class nucleoside reverse transcriptase translocation inhibitor (NRTtI) with novel modes of action. Data on ISL resistance are currently limited, particularly to HIV-1 non-B subtypes. This study aimed to assess prevalent nucleos(t)ide reverse transcriptase inhibitor (NRTI)-resistant mutations in HIV-1 subtype C for their phenotypic resistance to ISL.
View Article and Find Full Text PDFViruses
November 2024
Laboratory Branch, Division of HIV Prevention, National Center for HIV, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
The HIV integrase inhibitor, dolutegravir (DTG), in the absence of eliciting integrase (int) resistance, has been reported to select mutations in the virus 3'-polypurine tract (3'-PPT) adjacent to the 3'-LTR U3. An analog of DTG, cabotegravir (CAB), has a high genetic barrier to drug resistance and is used in formulations for treatment and long-acting pre-exposure prophylaxis. We examined whether mutations observed for DTG would emerge in vitro with CAB.
View Article and Find Full Text PDFViruses
November 2024
Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India.
The biological characteristics of early transmitted/founder (T/F) variants are crucial factors for viral transmission and constitute key determinants for the development of better therapeutics and vaccine strategies. The present study aimed to generate T/F viruses and to characterize their biological properties. For this purpose, we constructed 18 full-length infectious molecular clones (IMCs) of HIV from recently infected infants.
View Article and Find Full Text PDFViruses
November 2024
Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé P.O. Box 3077, Cameroon.
Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!