Background And Purpose: In acute stroke, arterial-input-function (AIF) determination is essential for obtaining perfusion estimates with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI). Standard DSC-MRI postprocessing applies single AIF selection, ie, global AIF. Physiological considerations, however, suggest that a multiple AIFs selection method would improve perfusion estimates to detect penumbral flow. In this study, we developed a framework based on comparable DSC-MRI and positron emission tomography (PET) images to compare the two AIF selection approaches and assess their performance in penumbral flow detection in acute stroke.
Methods: In a retrospective analysis of 17 sub(acute) stroke patients with consecutive MRI and PET scans, voxel-wise optimized AIFs were calculated based on the kinetic model as derived from both imaging modalities. Perfusion maps were calculated based on the optimized-AIF using two methodologies: (1) Global AIF and (2) multiple AIFs as identified by cluster analysis. Performance of penumbral-flow detection was tested by receiver-operating characteristics (ROC) curve analysis, ie, the area under the curve (AUC).
Results: Large variation of optimized AIFs across brain voxels demonstrated that there is no optimal single AIF. Subsequently, the multiple-AIF method (AUC range over all maps: .82-.90) outperformed the global AIF methodology (AUC .72-.85) significantly.
Conclusions: We provide PET imaging-based evidence that a multiple AIF methodology is beneficial for penumbral flow detection in comparison with the standard global AIF methodology in acute stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jon.12428 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!