A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption. | LitMetric

Ni@C composites, which simultaneously possess porous, core-shell and 1D nanostructures have been synthesized with a facile self-template strategy. The precursors were obtained by a hydrothermal process using NiCl · 6HO and nitrilotriacetic acid as the starting material and then annealed at 400 °C, 500 °C, and 600 °C. The Ni@C composites annealed at 500 °C display a nanorod feature with a length of ∼3 μm and diameter of 230-500 nm. In addition, about 3 nm carbon shells and 4 nm Ni cores can be found in Ni@C nanorods. Attributed to the interconnected mesoporous texture in nanorods, strengthened interfacial polarization from core-shell structure, and better impedance matching benefiting from a great deal of pores, Ni@C nanorod composites exhibit perfect microwave absorption performance. The minimum reflection loss (RL) value of -26.3 dB can be gained at 10.8 GHz with a thickness of 2.3 mm. Moreover, the effective bandwidth (RL ≤ -10 dB) can be achieved, 5.2 GHz (12.24-17.4 GHz) under an absorber thickness of 1.8 mm, indicating its great potential in the microwave absorption field. Considering this technique is facile and effective, our study may provide a good reference for the synthesis of 1D carbon-based microwave absorbers with core-shell nanostructure.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa5d6fDOI Listing

Publication Analysis

Top Keywords

microwave absorption
12
facile self-template
8
self-template strategy
8
ni@c nanorods
8
ni@c composites
8
500 °c
8
ni@c
5
strategy synthesizing
4
synthesizing porous
4
porous ni@c
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!