A sensitive analytical method for the determination of monoamine neurotransmitters (MNTs) in zebrafish larvae was developed using gas chromatography coupled to mass spectrometry. Six MNTs were selected as target compounds for neurotoxicity testing. MNTs underwent a two-step derivatization with hexamethyldisilazane (HDMS) for O-silylation followed by N-methyl-bis-heptafluorobutyramide (MBHFBA) for N-perfluoroacylation. Derivatization conditions were optimized by an experimental design approach. Method validation showed linear calibration curves (r  > 0.9976) in the range of 1-100 ng for all the compounds. The recovery rates were between 92 and 119%. The method was repeatable and reproducible with relative standard deviations (RSD) in the range of 2.5-9.3% for intra-day and 4.8-12% for inter-day variation. The limits of detection and the limits of quantitation were 0.4-0.8 and 1.2-2.7 ng/mL, respectively. The method was successfully applied to detect and quantify trace levels of MNTs in 5-day-old zebrafish larvae that were exposed to low concentrations of neurotoxic chemicals such as pesticides and methylmercury. Although visual malformations were not detected, the MNT levels varied significantly during early zebrafish development. These results show that exposure to neurotoxic chemicals can alter neurotransmitter levels and thereby may influence early brain development. Graphical abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-017-0239-4DOI Listing

Publication Analysis

Top Keywords

determination monoamine
8
monoamine neurotransmitters
8
gas chromatography
8
chromatography coupled
8
coupled mass
8
mass spectrometry
8
two-step derivatization
8
zebrafish larvae
8
neurotoxic chemicals
8
zebrafish
4

Similar Publications

A comprehensive review of the neurological effects of anethole.

IBRO Neurosci Rep

June 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.

Since ancient times many countries have employed medicinal plants as part of traditional medicine. Anethole is a substance found in various plants and has two isomers, cis-anethole (CA) and trans-anethole (TA). Currently, the food industry extensively use anethole as an aromatic and flavoring component.

View Article and Find Full Text PDF

Significance: Women are at increased risk for mood disorders, which may be partly attributed to exposure to endocrine-disrupting chemicals (EDCs) during sensitive periods such as pregnancy. Exposure during these times can impact brain development in the offspring, potentially leading to mood disorders in later life. Additionally, fluctuating levels of endogenous estrogens, as seen during pregnancy, or the use of oral contraceptives, can further elevate this risk.

View Article and Find Full Text PDF

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

Inhibition of mPFC norepinephrine improved chronic post-thoracotomy pain in adult rats.

Ann Med

December 2025

Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.

Background: Chronic post-thoracotomy pain (CPTP) is characterized by high incidence, long duration, and severity of pain. Medial prefrontal cortex (mPFC) is a brain region closely associated with chronic pain, and norepinephrine is involved in pain regulation. But the role of mPFC norepinephrine in CPTP and its possible mechanism is unclear.

View Article and Find Full Text PDF

Helminth parasites have long adapted to survive hostile host environments and can likely adapt against the chemical anthelmintic challenge. One proposed adaptation route is via Phase I and II xenobiotic metabolizing enzymes (XMEs). For successful Helminth pharmacotherapy discovery programs, a working understanding of Helminth-derived chemical detoxification, the Helminth detoxome, is a must.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!