Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Worldwide crop losses due to plant diseases exceed $60 billion annually. Next to fungi, viruses represent the greatest contributor to those losses, and these are transmitted in nature primarily by insects. Mexican bean beetles () are formidable pests of soybean, as well as efficient vectors of several soybean-infecting viruses, including (BPMV). Beetle-borne viruses have a unique mode of transmission, though their interactions with host plants and vectors remain poorly understood. In these studies, we implemented targeted metabolite profiling and high throughput RNA sequencing approaches to explore metabolic and molecular changes in soybean leaves infected with BPMV. The virus-infected plants showed altered defence signaling and amino acid concentrations—and most strikingly—had dramatically higher sucrose levels. Based on the results, we performed a series of behavioral bioassays using near-isogenic soybean lines of differing foliar sucrose levels in an attempt to more directly associate sucrose content and feeding preferences. Choice assays revealed is more attracted to BPMV-infected soybean than to healthy plants. Moreover, no-choice assays indicated that beetles consume less foliage per plant but ultimately feed on more plants in a given time period if they are higher in sucrose. Importantly, these virus-driven changes to beetle feeding preferences are likely to increase BPMV spread in natural environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499813 | PMC |
http://dx.doi.org/10.1093/gbe/evx033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!