Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.

Front Neurosci

School of Electronics Engineering, College of IT Engineering, Kyungpook National University Daegu, South Korea.

Published: February 2017

The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5285364PMC
http://dx.doi.org/10.3389/fnins.2017.00028DOI Listing

Publication Analysis

Top Keywords

fourier based
12
evolutionary algorithm
8
multiple-channel eeg
8
spatial filter
8
will required
8
feature selection
8
based
5
feature
5
algorithm based
4
based feature
4

Similar Publications

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Adaptive mode-selective multiplexers offer the potential to control the modal content within multimode fibers for space division multiplexing (SDM). To such an end, spatial light modulators allow programmable control over the phase, amplitude, and polarization of optical wavefronts. One of the major challenges is to precisely match the manipulated beam to the waveguide modes in the multimode fiber.

View Article and Find Full Text PDF

We report the radiation-induced darkening (RD) effect caused by X-ray radiation and the bleaching effect caused by D/H/N loading in self-developed Yb-doped large mode-area photonic crystal fibers (LMA PCFs). The decrease in the slope efficiency caused by irradiation decays exponentially with an increase in the X-ray radiation doses, and the radiation-induced gain variation (RIGV) showed a linear decay trend with increasing irradiation doses. The slope efficiency of Yb-doped LMA PCF, which significantly degraded from 71.

View Article and Find Full Text PDF

The digital back-propagation (DBP) is an algorithm that can equalize the chromatic dispersion and nonlinearity in the coherent optical fiber communication system. However, the nonlinear equalization effect of traditional split-step Fourier method (SSFM)-based DBP is limited. This paper replaces the SSFM in DBP algorithm with the fourth-order Runge-Kutta in the interaction picture (RK4IP) method, and employs the Bayesian optimization algorithm (BOA) to optimize the coefficients in RK4IP-based DBP algorithm, then compares it with SSFM-based DBP algorithm, which is also optimized using BOA.

View Article and Find Full Text PDF

Due to their advantages of compact geometries and lightweight, diffractive optical elements (DOEs) are attractive in various applications such as sensing, imaging and holographic display. When designing DOEs based on algorithms, a diffraction model is required to trace the diffracted light propagation and to predict the performance. To have more precise diffraction field tracing and optical performance simulation, different diffraction models have been proposed and developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!