Glaciers have strongly contributed to sea-level rise during the past century and will continue to be an important part of the sea-level budget during the twenty-first century. Here, we review the progress in estimating global glacier mass change from in situ measurements of mass and length changes, remote sensing methods, and mass balance modeling driven by climate observations. For the period before the onset of satellite observations, different strategies to overcome the uncertainty associated with monitoring only a small sample of the world's glaciers have been developed. These methods now yield estimates generally reconcilable with each other within their respective uncertainty margins. Whereas this is also the case for the recent decades, the greatly increased number of estimates obtained from remote sensing reveals that gravimetry-based methods typically arrive at lower mass loss estimates than the other methods. We suggest that strategies for better interconnecting the different methods are needed to ensure progress and to increase the temporal and spatial detail of reliable glacier mass change estimates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5283499 | PMC |
http://dx.doi.org/10.1007/s10712-016-9394-y | DOI Listing |
Talanta
January 2025
Center for Multiplatform Metabolomics Studies (CEMM) at the Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil. Electronic address:
There is no consensus in the literature regarding the ideal protocol for obtaining and preparing cell samples for untargeted metabolomics. Nevertheless, the procedures must be carefully evaluated for proper and reliable results for each organism under study. This work proposes a novel protocol for determining intracellular metabolites in Leishmania promastigotes and is fully optimized for application in conjunction with gas chromatography-mass spectrometry platforms.
View Article and Find Full Text PDFSci Adv
January 2025
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland.
Glaciers serve as natural archives for reconstructing past changes of atmospheric aerosol concentration and composition. While most ice-core studies have focused on inorganic species, organic compounds, which can constitute up to 90% of the submicrometer aerosol mass, have been largely overlooked. To our knowledge, this study presents the first nontarget screening record of secondary organic aerosol species preserved in a Belukha ice core (Siberia, Russian Federation), ranging from the pre-industrial to the industrial period (1800-1980 CE).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
CMA Earth System Modeling and Prediction Centre (CEMC), China Meteorological Administration, Beijing 100081, China.
Vegetation fires release a large fraction of light-absorbing components, which can contribute to the melting of snowpack and alpine glaciers. However, the relationship between variability in fire emissions and alpine glacier melting on the Third Pole (TP) remains poorly understood. This study provides evidence that carbon emissions from windward vegetation fires play a crucial role in comprehending glacier melting on the TP, particularly during the months of intense vegetation fires from March to May for monsoon-dominated glaciers and from June to October for westerlies-dominated glaciers.
View Article and Find Full Text PDFNat Commun
January 2025
Chair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich, Munich, Germany.
A major uncertainty in predicting the behaviour of marine-terminating glaciers is ice dynamics driven by non-linear calving front retreat, which is poorly understood and modelled. Using 124919 calving front positions for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, generated with deep learning, we identify pervasive calving front retreats for non-surging glaciers over the past 38 years. We observe widespread seasonal cycles in calving front position for over half of the glaciers.
View Article and Find Full Text PDFSci Total Environ
January 2025
Ministry of Earth Science, New Delhi 110003, India.
Glaciers of Jammu and Kashmir are retreating faster than those in the broader northwestern Himalayas, yet some glaciers in the Chenab River basin display signs of periodic advancement and mass gain (2005-2007). These features, such as coalescing lobate structures and blocked meltwater streams, raise intriguing questions about localized glacier dynamics. While global concerns over climate change and glacier retreat persist, the lack of detailed evidence regarding glacier advance in this region warrants further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!