Immunoglobulin helicase μ-binding protein 2 (IGHMBP2) gene is responsible for Charcot-Marie-Tooth disease (CMT) type 2S and spinal muscular atrophy with respiratory distress type 1 (SMARD1). From June 2014 to December 2015, we collected 408 cases, who referred to our genetic laboratory for genetic analysis, suspected with CMT disease or other inherited peripheral neuropathies (IPNs) on the basis of clinical manifestations and electrophysiological studies. Mutation screening was performed using Ion AmpliSeq Custom Panels, which comprise 72 disease-causing or candidate genes of IPNs. We identified novel homozygous or compound heterozygous variants of IGHMBP2 in four patients. Three patients presented with childhood-onset axonal predominant sensorimotor polyneuropathies, whereas the other case was diagnosed with SMARD1, manifesting as low birth weight, weak cry, reduced spontaneous movement and developed respiratory distress 4 months after birth. We present the original report of CMT type 2S in Japan, and illustrate that recessive IGHMBP2 variants account for ~1.6% of axonal CMT in our cohort.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jhg.2017.15DOI Listing

Publication Analysis

Top Keywords

ighmbp2 variants
8
cmt type
8
respiratory distress
8
clinical diversity
4
diversity caused
4
caused novel
4
ighmbp2
4
novel ighmbp2
4
variants immunoglobulin
4
immunoglobulin helicase
4

Similar Publications

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Identification of Novel Genomic Variants in COVID-19 Patients Using Whole-Exome Sequencing: Exploring the Plausible Targets of Functional Genomics.

Biochem Genet

November 2024

Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, King Faisel Road, 7149, Tabuk, Saudi Arabia.

Covid-19 caused by SARS-CoV-2 virus has emerged as an immense burden and an unparalleled global health challenge in recorded human history. The clinical characteristics and risk factors of COVID-19 exhibit considerable variability, leading to a spectrum of clinical severity. Moreover, the likelihood of exposure to the virus may differ based on comorbidity status as comorbid illnesses have mechanisms that can considerably increase mortality by reducing the body's ability to withstand injury.

View Article and Find Full Text PDF

Background: Hereditary motor and sensory neuropathy (HMSN) refers to a group of inherited progressive peripheral neuropathies characterized by reduced nerve conduction velocity with chronic segmental demyelination and/or axonal degeneration. HMSN is highly clinically and genetically heterogeneous with multiple inheritance patterns and phenotypic overlap with other inherited neuropathies and neurodegenerative diseases. Due to this high complexity and genetic heterogeneity, this study aimed to elucidate the genetic causes of HMSN in Pakistani families using Whole Exome Sequencing (WES) for variant identification and Sanger sequencing for validation and segregation analysis, facilitating accurate clinical diagnosis.

View Article and Find Full Text PDF

Noncoding variants are a rare cause of recessive developmental disorders in trans with coding variants.

Genet Med

December 2024

Big Data Institute, University of Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, United Kingdom; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA. Electronic address:

Purpose: Identifying pathogenic noncoding variants is challenging. A single protein-altering variant is often identified in a recessive gene in individuals with developmental disorders (DD), but the prevalence of pathogenic noncoding "second hits" in trans with these is unknown.

Methods: In 4073 genetically undiagnosed rare-disease trio probands from the 100,000 Genomes project, we identified rare heterozygous protein-altering variants in recessive DD-associated genes.

View Article and Find Full Text PDF

Spinal muscular atrophy with respiratory distress type 1 (SMARD1; OMIM #604320, ORPHA:98920) is a rare autosomal recessive congenital motor neuron disease. It is caused by variants in the gene. Clinically, it presents with respiratory failure due to diaphragmatic paralysis, progressive muscle weakness starting in the distal parts of the limbs, dysphagia, and damage to sensory and autonomic nerves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!