Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, , and predicted which genera were associated with inhibitory activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347554PMC
http://dx.doi.org/10.1073/pnas.1621226114DOI Listing

Publication Analysis

Top Keywords

allowed identification
8
microfluidic droplet
4
droplet platform
4
platform ultrahigh-throughput
4
ultrahigh-throughput single-cell
4
single-cell screening
4
screening biodiversity
4
biodiversity ultrahigh-throughput
4
ultrahigh-throughput screening
4
screening uhts
4

Similar Publications

A 36-year-old woman diagnosed with complicated cholecystolithiasis underwent elective laparoscopic cholecystectomy (LC), then converted to open cholecystectomy because of a massive intraoperative bleeding. Hemostasis was performed with clipping and suturing the source of bleeding. In post-operative period, the patient suffered from persistent anemia associated with hemoperitoneum diagnosed through abdominal CT scanning, in absence of any sign of active bleeding.

View Article and Find Full Text PDF

Introduction: Cardiovascular disease (CVD) is the leading cause of death for women in the United States, and U.S. female Veterans have higher rates of CVD compared to civilian women.

View Article and Find Full Text PDF

Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.

View Article and Find Full Text PDF

: Splenectomy leads to a high rate of remission in chronic primary immune thrombocytopenia (ITP), but its unpredictable long-term positive outcomes and that it is a irreversible surgical approach discourage clinicians and patients. The identification of predictors of response may redefine the timing of splenectomy. In this retrospective, multicentric study we aimed to investigate clinical-histological predictors of splenectomy response in ITP patients and provide an easy-to-use score to predict splenectomy response in ITP.

View Article and Find Full Text PDF

The Chang'e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole-Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe landing and supporting geological research. Aiming at existing impact crater identification problems such as complex background, low identification accuracy, and high computational costs, an efficient impact crater automatic detection model named YOLOv8-LCNET (YOLOv8-Lunar Crater Net) based on the YOLOv8 network is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!