Oral streptococci including mitis group streptococci are commensal residents and are also the first to colonize the oral cavity. However, various species of these oral streptococci have the potential to invade the host and occasionally lead to severe infectious disease such as cardiovascular diseases. Oral streptococci have close interactions with the host immune system including macrophages at the oral mucosal surface. One notable common trait of oral streptococcus including Streptococcus oralis (S. oralis) is the production of hydrogen peroxide (HO). Using a comprehensive microarray approach, we sought to understand the innate immune response profiling affected by HO production from oral streptococci. We compared the gene expression patterns of macrophages infected with S. oralis wild type (WT) and streptococcal pyruvate oxidase knockout (SpxB-KO), a strain that does not produce HO. We found that HO from S. oralis suppressed proinflammatory gene expression such as TNF-α, that is induced in response to infection, and activated the cellular stress genes such as Egr-1 in response to oxidative stress. A comparative gene ontology analysis of S. oralis WT and SpxB-KO strains revealed that during infection, down regulated genes were closely related to the processes involved in the host defense reaction and up regulated genes were related with the cellular stress responses. Using qPCR analysis, we also confirmed the same pattern of expression changes such as TNF-α, IL-6 and Egr-1. Furthermore, supernatant from SpxB-KO could not suppress the expression of TNF-α in macrophages stimulated with LPS. These findings suggested that HO production from S. oralis leads to the suppression of inflammatory responses and NF-κB signaling pathways in macrophages as well as the induction of the oxidative stress response. We concluded that streptococcal HO production has the beneficial effects of modulating the innate immune response, thereby stabilizing streptococcal colonization at the mucosal surface and even in the bloodstream leading to cardiovascular disease after invasion, in addition to the commensal role to compete other bacterial species as initial colonizer at oral cavity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.02.048DOI Listing

Publication Analysis

Top Keywords

oral streptococci
16
response infection
8
streptococcus oralis
8
hydrogen peroxide
8
oral
8
oral cavity
8
mucosal surface
8
innate immune
8
immune response
8
gene expression
8

Similar Publications

pH-FISH: coupled microscale analysis of microbial identity and acid-base metabolism in complex biofilm samples.

Microbiome

December 2024

Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark.

Background: Correlative structural and chemical imaging of biofilms allows for the combined analysis of microbial identity and metabolism at the microscale. Here, we developed pH-FISH, a method that combines pH ratiometry with fluorescence in situ hybridization (FISH) in structurally intact biofilms for the coupled investigation of microbial acid metabolism and biofilm composition. Careful biofilm handling and modified sample preparation procedures for FISH allowed preservation of the three-dimensional biofilm structure throughout all processing and imaging steps.

View Article and Find Full Text PDF

Unlabelled: The ResistAZM randomized controlled trial found that the receipt of ceftriaxone/azithromycin, compared to ceftriaxone was not associated with an increase in the proportion of oral commensal Neisseria spp. and streptococci with azithromycin resistance 14 days after treatment. We repeated the analyses by measuring the minimum inhibitory concentrations (MICs) of azithromycin and ceftriaxone for individual colonies of commensal Neisseria spp.

View Article and Find Full Text PDF

Streptococci Biotypes in Primary and Permanent Caries: A Case-Control Study.

Int J Clin Pediatr Dent

September 2024

Department of Microbiology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India.

Background And Aim: Streptococci, mainly mutans streptococci, are known as the causative microbes of dental caries, but there is limited clarity about their impact on the tooth level and the distribution of streptococci species in different dentition stages. This study evaluates the distribution of streptococci species in primary and permanent teeth in children and adolescents with caries.

Materials And Methods: The study population consisted of two groups: subjects with caries in primary teeth aged 2-5 years and adolescents with caries in permanent teeth aged 12-15 years.

View Article and Find Full Text PDF

Potentiation of antimicrobial photodynamic therapy with potassium iodide and methylene blue: targeting oral biofilm viability.

Photochem Photobiol Sci

December 2024

Department of Health Sciences and Pediatric Dentistry, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), P.O. BOX 52, Av. Limeira, 901, Piracicaba, SP, 13414-903, Brazil.

The study aimed to assess the impact of combining potassium iodide (KI) with methylene blue (MB) in antimicrobial photodynamic therapy (aPDT) within an oral biofilm formed in situ. A single-phase, 14 days in situ study involved 21 volunteers, who wore a palatal appliance with 8 bovine dentin slabs. These slabs were exposed to a 20% sucrose solution 8 times a day, simulating a high cariogenic challenge.

View Article and Find Full Text PDF
Article Synopsis
  • A single-nucleotide polymorphism in the ManN gene led to unusual traits in glucose phosphotransferase system (PTS) mutants, including increased organic acid excretion and heightened PTS activity, affecting bacterial fitness and carbon catabolite repression.* -
  • Genetic deletions of different PTS components resulted in growth defects on glucose due to excessive hydrogen peroxide (HO) excretion, but these defects were mitigated with catalase supplementation, ultimately enhancing bacterial yield.* -
  • The study suggests that the glucose-PTS plays a crucial role in regulating central carbon metabolism in streptococci, influencing acid production, pH balance, and the bacterial antagonism against harmful oral species, pointing to its potential as a therapeutic target for dys
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!