The present study discovered four novel hyaluronan-degrading enzyme (hyaluronidase) inhibitors including chikusetsusaponins and catechins through the activity-guided separation of Panax japonicus and Prunus salicina, respectively. Although the discovery resulted in identification of usual frequent hitters, subsequent mechanistic characterizations under our DMSO-perturbed assay conditions and related protocols revealed that chikusetusaponin IV would serve as an aggregating and non-specific binding inhibitor, while (-)-epicatechin would interact specifically with enzyme at the catalytic site or more likely at a kind of catechin-binding site with a relatively week inhibitory activity. The latter description might provide a possible explanation for the well-known fact that a series of catechin have been described as frequent hitters in biological assays with a moderate activity. Thus, the present study demonstrated a practical and robust methodology to characterize initial screening hits mechanistically molecule-by-molecule in the early stage of natural product-based drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2017.01.083 | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
Duke Medicine, Medicine, Durham, North Carolina, United States.
Becoming more frequent due to climate change, ozone (O) exposures can cause lung injury. Alveolar type 2 (AT2) cells and hyaluronan (HA), a matrix component, are critical to repairing lung injury and restoring homeostasis. Here, we define the impact of HA on AT2 cells following acute O exposure.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.
Drug resistance is an important factor for prostate cancer (PCa) to progress into refractory PCa, and abnormal lipid metabolism usually occurs in refractory PCa, which presents great challenges for PCa therapy. Here, a cluster of differentiation 36 (CD36) inhibitor sulfosuccinimidyl oleate sodium (CD36i) and stearoyl-CoA desaturase 1 (SCD1) siRNA (siSCD1) are selected to inhibit lipid uptake and synthesis in PCa, respectively. To this end, a multiresponsive drug delivery nanosystem, HA@CD36i-TR@siSCD1 is designed.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Hyaluronidases have been a subject of great interest in medical and cosmeceutical applications. Previously, our group demonstrated that the venom glands of contain hyaluronidase enzymes (VesT2s), and heterologous expression of the corresponding gene () in systems results in inclusion bodies, necessitating functional folding using urea. Here, we report the successful heterologous expression of VesT2a in the expression system, with gene construction achieved using Golden.
View Article and Find Full Text PDFMar Drugs
December 2024
Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
The natural products industry is gaining increasing interest, not only due to modern lifestyles becoming more aware of environmental and sustainability issues but also because of the loss of efficacy and undesirable side effects of synthetic ingredients. This pioneering study provides a comprehensive comparison between extracts obtained from wild and commercial samples of Linnaeus, highlighting their multifaceted benefits in cosmetic applications. The antiaging potential of acetone (70 and 90%) and ethanol 60% extracts from wild and commercial samples of , focusing on their application in cosmetics, was explored.
View Article and Find Full Text PDFBMC Genomics
December 2024
Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Background: Animal venom systems are considered as valuable model for investigating the molecular mechanisms underlying phenotypic evolution. Stonefish are the most venomous and dangerous fish because of severe human envenomation and occasionally fatalities, whereas the genomic background of their venom has not been fully explored compared with that in other venomous animals.
Results: In this study, we followed modern venomic pipelines to decode the Synanceia verrucosa venom components.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!