Aucubin and its hydrolytic derivative attenuate activation of hepatic stellate cells via modulation of TGF-β stimulation.

Environ Toxicol Pharmacol

Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China. Electronic address:

Published: March 2017

Eucommia ulmoides is an important traditional Chinese medicine and has been used as a tonic with a long history. Aucubin is an active component extracted from Eucommia ulmoides, which has liver-protection effects. However the mechanisms are still unclear. To investigate the inhibitory effects and the underlying mechanisms of aucubin on TGF-β1-induced activation of hepatic stellate cells and ECM deposition, Human hepatic stellate cells (LX-2 cells) were incubated with TGF-β1 to evaluate the anti-fibrotic effect of aucubin. Western blot was used to investigate the expression of α-SMA, Col I, Col III, MMP-2 and TIMP-1. ROS production was monitored using DCFH-DA probe, and NOX4 expression was detected by Real-time PCR. Results indicated that TGF-β1 stimulated the activation and ECM deposition of LX-2 cells. Compared with the control group, aucubin and aucubigenin both reduced the protein expression of α-SMA, Col I, Col III and MMP-2 in LX-2 cells. Aucubin and aucubigenin also suppressed the generation of ROS and down-regulated the NOX4 mRNA expression. Taken together, aucubin and aucubigenin both inhibit the activation and ECM deposition of LX-2 cells activated by TGF-β1. Aucubin and aucubigenin are potential therapeutic candidate drugs for liver fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2017.02.012DOI Listing

Publication Analysis

Top Keywords

lx-2 cells
16
aucubin aucubigenin
16
hepatic stellate
12
stellate cells
12
ecm deposition
12
aucubin
8
activation hepatic
8
eucommia ulmoides
8
expression α-sma
8
α-sma col
8

Similar Publications

Physicochemical characterization and antitumor activity in vitro of a polysaccharide from Christia vespertilionis.

Int J Biol Macromol

December 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China. Electronic address:

CVP-2 is a homogeneous polysaccharide extracted from the whole plant of Christia vespertilionis, with an average molecular weight of approximately 92,920 Da. Its main chain consists of repeating units of [3,5)-α-L-Araf-(1] → [5)-α-L-Araf-(1]→, with branches at the C-3 position: branch 1 is α-L-Araf-(1→, and branch 2 is α-L-Araf-(1 → 4)-. Additionally, the structure includes β-D-Gclp-(1 → [4)-β-D-Glap-(1] → 5)-α-L-Araf-(1→.

View Article and Find Full Text PDF

Multi-omics and experimental analysis unveil the key components in Scutellaria baicalensis Georgi to alleviate hepatic fibrosis via regulating cPLA2-mediated arachidonic acid metabolism.

J Transl Med

December 2024

Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.

Background: Scutellaria baicalensis Georgi, a traditional Chinese herb, is known for its various biological effects, including antibacterial, anti-inflammatory, antioxidative, and antitumor properties. However, the function and mechanisms of methanol extract of Scutellaria baicalensis Georgi (MESB) in treating hepatic fibrosis remain unclear.

Methods: This study utilized a CCl4-induced mouse model of hepatic fibrosis to assess the effects of MESB through histopathological analysis and serum tests.

View Article and Find Full Text PDF

Aim Of The Study: This study aimed to investigate the impact of bone marrow-derived mesenchymal stem cell exosomes (BMSC-Exos) on hepatic stellate cell (HSC) activation and explore the underlying molecular mechanisms in liver fibrosis.

Material And Methods: BMSC-Exos were co-incubated with LPS-activated LX-2 cells. Fibrosis markers, iron content, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) levels, and ferroptosis-related proteins were assessed.

View Article and Find Full Text PDF

AdipoRon has been validated for its ability to reverse liver fibrosis, yet the underlying mechanisms remain to be thoroughly investigated. Collagen, predominantly synthesized and secreted in hepatic stellate cells (HSCs), relies on glycine as a crucial constituent. Activating transcription factor 4 (ATF4) serves as a pivotal transcriptional regulator in amino acid metabolism.

View Article and Find Full Text PDF

Introduction: Chrysophanol (Cho) is a natural anthraquinone with biological effects such as inducing ferroptosis and anticancer activity. The hepatitis B virus X protein (HBx) is essential for HBV replication. We aimed to identify the key pathways in HBx-induced hepatic stellate cell (HSC) activation and to characterize the potential mechanisms of action of Cho against liver fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!