Apple is a fruit crop cultivated worldwide. Apple orchards are exposed to a diverse set of environmental and biological factors that affect the productivity and sustainability of the culture. Many of the efforts and costs for apple production rely on reducing the incidence of fungal diseases, and one of the main diseases is apple scab caused by the fungus Venturia inaequalis. The economic impact of scab on apple productivity has guided many breeding programs to search for cultivars resistant to apple scab. Introgression from wild relatives has been successful to some extent, and genetic engineering for resistant cultivars has even been employed. This review presents the techniques used to the present time to obtain pathogen-resistant apple cultivars and introduces new biotechnological approaches based on plant plasmids that show promising results for delivering genetic traits with a short-term perspective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452129 | PMC |
http://dx.doi.org/10.1590/1678-4685-GMB-2016-0043 | DOI Listing |
Food Chem
December 2024
Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:
To clarify the effects of pervaporation and distillation on aroma profiles, the Sensomics approach investigated the aroma characteristics and key aroma compounds of Cabernet Sauvignon (CS) and Ugni Blanc (UB) grape spirits produced by pervaporation (UB-P, CS-P) and distillation (UB-D, CS-D). The results indicated that pervaporated grape spirits exhibited stronger floral and fruity aromas, while distilled grape spirits were characterized by more pronounced cooked apple and toasty aromas. Consumers preferred products with intense floral and fruity aromas and weaker cooked apple note.
View Article and Find Full Text PDFTree Physiol
December 2024
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå.
Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.
View Article and Find Full Text PDFNew Phytol
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
The clustered distribution of genes involved in metabolic pathways within the plant genome has garnered significant attention from researchers. By comparing and analyzing changes in the flanking regions of metabolic genes across a diverse array of species, we can enhance our understanding of the formation and distribution of biosynthetic gene clusters (BGCs). In this study, we have designed a workflow that uncovers and assesses conserved positional relationships between genes in various species by using synteny neighborhood networks (SNN).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy.
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Alpine Environment, Eurac Research, Drususallee/Viale Druso 1, Bolzano/Bozen, 39100, Italy.
Orchard meadows, a specific agroforestry system characterised by scattered high-stem fruit trees, are a traditional element of several cultural landscapes in Central Europe and provide important ecosystem services. Since the middle of the 20th century, orchard meadows have drastically declined across Europe. Spatial information on the drivers and patterns of such a decline in several regions in Central Europe is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!