Long-term Follow-up of Humoral Immune Status in Adult Lung Transplant Recipients.

Transplantation

1 Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands. 2 Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands. 3 Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands. 4 Department of Science, University College Roosevelt, Middelburg, The Netherlands.

Published: October 2017

Background: Lung transplant recipients have an increased risk for infections in the posttransplant period due to immunosuppressive therapy. Protection against infections can be achieved through vaccination, but the optimal vaccination schedule in lung transplant recipients is unknown. Data on long-term immunological follow up and vaccination responses after lung transplantation are scarce.

Methods: Here we present long-term immunological follow up of a cohort of 55 lung transplant recipients. This includes detailed antibody responses after 23-valent pneumococcal polysaccharide vaccination (23vPPV).

Results: All patients were vaccinated with 23vPPV before transplantation. Median follow-up after transplantation was 6.6 years (379 patient-years). After transplantation, there is a significant decrease of all immunoglobulins, IgG subclasses and pneumococcal polysaccharide antibodies. After the first year posttransplantation, there is a gradual increase of all immunoglobulins and IgG subclasses, but values were always significantly lower than in the pretransplant period. After a median of 4.4 years posttransplantation, patients were revaccinated with 23vPPV. The pneumococcal polysaccharide antibody response was impaired in 87% of patients (ie, antibody titer above cutoff and twofold increase between pre and postvaccination values for <70% of serotypes).

Conclusions: We found that impairment of humoral immunity was most outspoken in the first year after lung transplantation. Immunoglobulin levels remain decreased several years after transplantation and the response to pneumococcal polysaccharide vaccine was significantly lower posttransplantation compared to the pretransplantation response. However, most patients did show a partial response to vaccination. Based on our results, revaccination with pneumococcal vaccines after transplantation should be considered 1 year after transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0000000000001685DOI Listing

Publication Analysis

Top Keywords

lung transplant
16
transplant recipients
16
pneumococcal polysaccharide
12
long-term immunological
8
immunological follow
8
immunoglobulins igg
8
igg subclasses
8
lung
5
long-term follow-up
4
follow-up humoral
4

Similar Publications

Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.

View Article and Find Full Text PDF

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Objective: To determine the impact of prolonged storage of donor lungs at 10°C of up to 24h on outcome after lung transplantation.

Background: An increasing body of evidence suggests 10°C as the optimal storage temperature for donor lungs. A recent study showed that cold ischemic times can be safely expanded to >12h when lungs are stored at 10°C.

View Article and Find Full Text PDF

Explore Alteration of Lung and Gut Microbiota in a Murine Model of OVA-Induced Asthma Treated by CpG Oligodeoxynucleotides.

J Inflamm Res

January 2025

Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People's Republic of China.

Aim: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.

Methods: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.

View Article and Find Full Text PDF

Predicting Time to First Rejection Episode in Lung Transplant Patients Using a Comprehensive Multi-Indicator Model.

J Inflamm Res

January 2025

Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People's Republic of China.

Background: Rejection hinders long-term survival in lung transplantation, and no widely accepted biomarkers exist to predict rejection risk. This study aimed to develop and validate a prognostic model using laboratory data to predict the time to first rejection episode in lung transplant recipients.

Methods: Data from 160 lung transplant recipients were retrospectively collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!