Background: Friedman, the United Kingdom's National Institute for Health and Care Excellence (NICE), and the American College of Obstetricians and Gynecologists/Society for Maternal-Fetal Medicine (ACOG/SMFM) support different active labor diagnostic guidelines. Our aims were to compare likelihoods for cesarean delivery among women admitted before vs in active labor by diagnostic guideline (within-guideline comparisons) and between women admitted in active labor per one or more of the guidelines (between-guideline comparisons).
Design: Active labor diagnostic guidelines were retrospectively applied to cervical examination data from nulliparous women with spontaneous labor onset (n = 2573). Generalized linear models were used to determine outcome likelihoods within- and between-guideline groups.
Results: At admission, 15.7%, 48.3%, and 10.1% of nulliparous women were in active labor per Friedman, NICE, and ACOG/SMFM diagnostic guidelines, respectively. Cesarean delivery was more likely among women admitted before vs in active labor per the Friedman (AOR 1.75 [95% CI 1.08-2.82] or NICE guideline (AOR 2.55 [95% CI 1.84-3.53]). Between guidelines, cesarean delivery was less likely among women admitted in active labor per the NICE guideline, as compared with the ACOG/SMFM guideline (AOR 0.55 [95% CI 0.35-0.88]).
Conclusion: Many nulliparous women are admitted to the hospital before active labor onset. These women are significantly more likely to have a cesarean delivery. Diagnosing active labor before admission or before intervention to speed labor may be one component of a multi-faceted approach to decreasing the primary cesarean rate in the United States. The NICE diagnostic guideline is more inclusive than Friedman or ACOG/SMFM guidelines and its use may be the most clinically useful for safely lowering cesarean rates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608623 | PMC |
http://dx.doi.org/10.1111/birt.12274 | DOI Listing |
ChemMedChem
December 2024
University of Ljubljana, Faculty of Pharmacy, Askerceva cesta 7, 1000, Ljubljana, SLOVENIA.
Seven different enzymes comprise the galactosyltransferases family, of which β-1,4-galactosyltransferase I (β-1,4-GALT1) is the major contributor to galactosylation activity in cells. Since abnormalities in galactosylation are associated with many pathophysiological conditions, β-1,4-GALT1 is an interesting new target for drug discovery and molecular probe design. There are several known β-1,4-GALT1 inhibitors, but most of them suffer from low cell permeability and thus low in vivo activity.
View Article and Find Full Text PDFChemistry
December 2024
Pandit Deendayal Energy University, Chemistry, Gandhinagar, Gujarat-382077, India, Gandhinagar, INDIA.
The accurate discrimination among various volatile organic compounds, especially ethanol and acetone possess a serious concern for metal oxide based chemiresistive sensors. The work presents a systematic approach to address the issue by utilizing superior sensing potentiality of Zn0.5Ni0.
View Article and Find Full Text PDFChemistry
December 2024
Tongji University, School of Chemical Science and Engineering, 1239 Siping Road, Shanghai, CHINA.
Upconverted circularly polarized luminescence (UC-CPL) active organic and organic-inorganic composite materials have garnered increasing attention due to their vast potential applications in areas such as 3D displays, encryptions, spintronics and optoelectronic devices. However, effective methods for fabricating chiral inorganic materials exhibiting UC-CPL remain a challenge. Herein, we propose an approach for the synthesis of UC-CPL active chiral mesostructured CeO2 powders (CMCs) via a hydrothermal growth method, using L/D-aspartic acid as symmetry-breaking and structure-directing agents.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Beijing University of Technology, Materials Science and Technology, Pingleyuan 100#, Chaoyang District, 100124, Beijing, CHINA.
Manganese-based (Mn-based) layered oxides have emerged as competitive cathode materials for sodium-ion batteries (SIBs), primarily due to their high energy density, cost-effectiveness, and potential for mass production. However, these materials often suffer from irreversible oxygen redox reactions, significant phase transitions, and microcrack formation, which lead to considerable internal stress and degradation of electrochemical performance. This study introduces a high-entropy engineering strategy for P2-type Mn-based layered oxide cathodes (HE-NMCO), wherein a multi-ingredient cocktail effect strengthens the lattice framework by modulating the local environmental chemistry.
View Article and Find Full Text PDFIntensive Care Med
December 2024
Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!