Sumoylation: Implications for Neurodegenerative Diseases.

Adv Exp Med Biol

Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.

Published: September 2017

The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-50044-7_16DOI Listing

Publication Analysis

Top Keywords

diverse array
8
signaling pathways
8
sumoylation
5
sumoylation implications
4
implications neurodegenerative
4
neurodegenerative diseases
4
diseases covalent
4
covalent posttranslational
4
posttranslational modifications
4
modifications proteins
4

Similar Publications

Urinalysis is one of the predominant tools for clinical testing owing to the abundant composition, sufficient volume, and non-invasive acquisition of urine. As a critical component of routine urinalysis, urine protein testing measures the levels and types of proteins, enabling the early diagnosis of diseases. Traditional methods require three separate steps including strip testing, protein/creatinine ratio measurement, and electrophoresis respectively to achieve qualitative, quantitative, and classification analyses of proteins in urine with long time and cumbersome operations.

View Article and Find Full Text PDF

Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.

View Article and Find Full Text PDF

This study has developed a pressure sensor array based on four functionalized DNA-nanoenzymes with catalase-like activity for multiple detections of foodborne pathogens through a portable pressure manometer. Benefiting from functionalization of 4-mercaptophenylboronic acid and β-mercaptoethylamine, the diversity of nonspecific interactions between four DNA-nanoenzymes and each of the nine bacteria leads to differences in pressure response patterns by catalyzing HO to generate exclusive "fingerprints". As effective statistical tools for processing multivariate data, principal component analysis and hierarchical clustering analysis are employed to identify nine foodborne pathogens by analyzing pressure response patterns.

View Article and Find Full Text PDF

Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression.

View Article and Find Full Text PDF

This dataset examines the interplay between socioeconomic status and educational outcomes among students at the Universidad Nacional de Colombia. Collected from publicly available data in collaboration with the National Directorate of Information, the dataset includes anonymized records of 3361 students from multiple university campuses during the first semester of 2021. It captures a diverse array of socioeconomic and academic variables, such as family income, residence type, tuition fee, and career choice, providing a unique basis for studying educational access in Colombia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!