The Role of Sumoylation in Senescence.

Adv Exp Med Biol

Faculty of Medicine and Health Sciences, Macquarie University, NSW, Sydney, 2109, Australia.

Published: September 2017

Cellular senescence is a program initiated by many stress signals including aberrant activation of oncogenes, DNA damage, oxidative lesions and telomere attrition. Once engaged senescence irreversibly limits cellular proliferation and potently prevents tumor formation in vivo. The precise mechanisms driving the onset of senescence are still not completely defined, although the pRb and p53 tumor suppressor pathways converge with the SUMO cascade to regulate cellular senescence. Sumoylation translocates p53 to PML nuclear bodies where it can co-operate with many sumoylated co-factors in a program that activates pRb and favors senescence. Once activated pRb integrates various proteins, many of them sumoylated, into a repressor complex that inhibits the transcription of proliferation-promoting genes and initiates chromatin condensation. Sumoylation is required for heterochromatin formation during senescence and may act as a scaffold to stabilize the pRb repressor complex. Thus, SUMO is a critical component of a tumor-suppressor network that limits aberrant cell proliferation and tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-50044-7_13DOI Listing

Publication Analysis

Top Keywords

cellular senescence
8
repressor complex
8
senescence
7
role sumoylation
4
sumoylation senescence
4
senescence cellular
4
senescence program
4
program initiated
4
initiated stress
4
stress signals
4

Similar Publications

Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.

Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.

View Article and Find Full Text PDF

Exosomal Dynamics: Bridging the Gap Between Cellular Senescence and Cancer Therapy.

Mech Ageing Dev

March 2025

Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India. Electronic address:

Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle.

View Article and Find Full Text PDF

Background: Glucocorticoid (GC) overuse is the main cause of osteonecrosis of the femoral head (ONFH). The dysfunction of bone marrow mesenchymal stem cells (BMSCs) plays an important role in ONFH pathogenesis. Physiological concentrations of GCs can induce the osteogenic differentiation of BMSCs; however, intervention with high concentrations of GC may lead to changes in aging and autophagy in certain cell types.

View Article and Find Full Text PDF

Esters have been described as bioactive chemical compounds. However, the presence of an ester as a functional group is often associated with hydrolytic liability. Therefore, it is often unclear whether esters serve as pro-drugs and are rather converted into bioactive drugs in cells.

View Article and Find Full Text PDF

Cellular Senescence in the Regenerative Niche Hampers Skeletal Muscle Repair.

Aging Dis

March 2025

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.

With the growing interest in skeletal muscle diseases, understanding the processes, factors, and treatments associated with muscle regeneration is crucial. Skeletal muscle regeneration is a complex process that largely depends on the niche composed of cell populations, such as satellite cells, and their microenvironment. Cellular senescence is associated with various physiological processes and age-related diseases and plays a significant role in the muscle regeneration niche.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!