The bulk and Young moduli and heats of hydration have been calculated at the DFT level for fully optimized models of all-siliceous and cationic zeolites with and without water, and then compared to the corresponding experimental data. Upon the addition of water, the monovalent alkali ion and divalent alkaline earth ion exchanged zeolites presented opposite trends in the elastic modulus. The main contribution to the decrease in the elastic modulus of the alkali ion exchanged zeolites appeared to be a shift of cations from the framework oxygen atoms upon water addition, with the coordination number often remaining the same. The contrasting increase in elastic modulus observed for the divalent (alkaline earth) ion exchanged zeolites was explained by cation stabilization resulting from increased coordination, which cannot be achieved within a rigid zeolite framework without water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-017-3237-8DOI Listing

Publication Analysis

Top Keywords

ion exchanged
12
exchanged zeolites
12
elastic modulus
12
alkali ion
8
divalent alkaline
8
alkaline earth
8
earth ion
8
zeolites
5
role water
4
elastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!