A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Safety and efficacy of a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent. | LitMetric

Safety and efficacy of a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent.

J Mater Sci Mater Med

Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.

Published: March 2017

Late stent thrombosis (LST) following drug-eluting stent (DES) implantation in patients with coronary artery disease (CAD) is often associated with delayed vascular healing, resulting from vascular inflammation and hypersensitivity to durable polymers and drugs. Therefore, DES design, materials, and coatings have been technologically revolutionized. Herein, we designed a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent (AGF-BP-SES), with a sirolimus content of only about one-third of traditional DES. The mechanical performances of AGF-BP-SES during compression and expansion were investigated. The pharmacokinetic (PK) profile of sirolimus was studied in the swine model. The in vivo efficacy of AGF-BP-SES was compared with that of Xience PRIME stent. The results showed that AGF-BP-SES exhibited mechanical properties similar to traditional DES, including the rebound ratio of radial contraction/direction, rebound ratio of axial contraction/direction, and inhomogeneity of compression/expansion. Despite utilizing a reduced dose of sirolimus, AGF-BP-SES delivered sirolimus to the coronary artery in a controlled and efficient manner. The stent maintained a safe and effective local drug concentration without local or systemic risks. In the swine model, histopathological indicators predicted safety and biocompatibility of AGF-BP-SES. In conclusion, AGF-BP-SES maintained similar mechanical properties as other stents while reducing the drug-loading capacity, and showed a favorable safety and efficacy profile of the targeted DES.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-017-5864-0DOI Listing

Publication Analysis

Top Keywords

safety efficacy
8
novel abluminal
8
abluminal groove-filled
8
groove-filled biodegradable
8
biodegradable polymer
8
polymer sirolimus-eluting
8
sirolimus-eluting stent
8
coronary artery
8
stent agf-bp-ses
8
traditional des
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!